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1.1 Chapter Overview

In this opening chapter, we provide a concise treatment of basic notation

and terminology for partially ordered sets. This will include a discussion

of covering relations, diagrams, chains and antichains, cartesian products,

disjoint and lexicographic sums, and lattices. We encourage readers who

are comfortable with the basics to skip ahead to Chapter 2, referring back

to this introductory material as necessary. For those readers who know a

bit but don’t consider themselves as experts, give the chapter a quick read.

It will be a helpful review. And for those readers who are new to partially

ordered sets, we trust you will find this chapter and supporting exercises a

good entry point.

1.2 Notation and Terminology

A binary relation P on a set X is called a partial order on X when it satisfies

the following three conditions:

(i) If x ∈ X, then (x, x) ∈ P .

(ii) If x, y ∈ X, (x, y) ∈ P and (y, x) ∈ P , then x = y.

(iii) If x, y, z ∈ X, (x, y) ∈ P and (y, z) ∈ P , then (x, z) ∈ P .

These three conditions are called the reflexive, antisymmetric and transitive

properties, respectively.

Example 1.2.1 Let X = {a, b, c, d, e, f}. The following binary relations are

partial orders on X:

(i) P1 = {(a, a), (b, b), (c, c), (d, d), (e, e), (f, f)}.
(ii) P2 = {(a, a), (b, b), (c, c), (d, d), (e, e), (f, f), (a, b), (b, c), (a, c)}.
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(iii) P3 = {(a, a), (b, b), (c, c), (d, d), (e, e), (f, f), (a, c), (a, e), (a, f),

(b, c), (b, d), (b, e), (b, f), (d, e), (d, f), (e, f)}.

A partially ordered set or poset P is a pair (X,P ) where X is a set and P

is a partial order on X. We call X the ground set of the poset, and elements

of the ground set X are also called points.

1.3 Alternate Notation for Partially Ordered Sets

A binary relation Q on a set X is called a strict partial order on X when it

satisfies the following two properties.

(i) If x ∈ X, then (x, x) /∈ Q.

(ii) If x, y, z ∈ X, (x, y) ∈ Q and (y, z) ∈ Q, then (x, z) ∈ Q.

The first of these two properties is called the irreflexive property. Clearly,

if Q is a strict partial order on X, then P = Q∪{(x, x) : x ∈ X} is a partial

order on X, according to our original definition.

Example 1.3.1 Let X = {a, b, c, d, e, f}. The following binary relations are

strict partial orders on X. They correspond to the three partial orders given

in Example 1.2.1 above.

(i) Q1 = ∅.
(ii) Q2 = {(a, b), (b, c), (a, c)}.
(iii) Q3 = {(a, c), (a, e), (a, f), (b, c), (b, d), (b, e), (b, f), (d, e), (d, f), (e, f)}.

When P is a partial order on X, many authors prefer to emphasize the

order concept and write x ≤ y in P when (x, y) ∈ P . Since a poset P is

a pair (X,P ), we can write x ≤ y in P as a substitute for x ≤ y in P .

Of course, y ≥ x in P means the same as x ≤ y in P , while the notations

x < y in P and y > x in P mean x ≤ y in P and x 6= y. Similarly, when

Q is a strict partial order on X, we write x < y in Q and y > x in Q when

(x, y) ∈ Q.

When the partial order P remains fixed throughout a discussion, it is

convenient to abbreviate x < y in P by just writing x < y. The same

convention is used for strict partial orders.

Accordingly, a poset can be considered as either

(i) A pair (X,≤) where ≤ is a reflexive, antisymmetric and transitive

relation on X, or

(ii) A pair (X,<) where < is an irreflexive and transitive relation on X.
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When discussing more than one partial order on a ground set X, it is

useful to distinguish between the partial order and the ground set and refer

to a poset as a pair (X,P ). On the other hand, in many settings, the partial

order is fixed throughout the discussion. In this case, many authors will

refer to a poset with a single symbol, such as P or Q, so they will write,

for example: Let P be a poset on n points, and let x ∈ P . This statement

means that the ground set of the poset has n points and that the element x

belongs to this ground set.

The same conventions will be used for graphs. In particular, while we

formally consider a graph G as a pair (V,E) where V is a vertex set and E

is an edge set, we will just say G is a graph when the vertex set and edge

set remained fixed throughout the discussion.

1.4 Comparability, Incomparability and Cover Graphs

Let P = (X,P ) be a poset. If x and y are points in X (not necessarily dis-

tinct), and either x ≤ y in P or y ≤ x in P , we say x and y are comparable

in P; else they are incomparable in P. Note that each element of X is com-

parable with itself. We will write x‖y in P when x and y are incomparable

in P . Also, we will let Inc(P) = {(x, y) ∈ X × X : x‖y in P}. Note that

Inc(P) is symmetric and irreflexive. On the other hand, there is no standard

notation for comparable pairs.

Associated with a poset P = (X,P ) is a comparability graph G which

has X as its vertex set with distinct points (vertices) adjacent in G if and

only if they are comparable in P. We will say more about these graphs in

Chapter 9.99. The incomparability graph of a poset is defined analogously.

Again, let P = (X,P ) be a poset and let x and y be distinct points in

X. We say x is covered by y in P (also y covers x in P) when x < y in P ,

and there is no point z ∈ X for which both x < z in P and z < y in P . We

associate with the poset P a cover graph having X as its vertex set with

distinct points adjacent when one of them covers the other in P.

The concept of a cover graph provides a convenient scheme for drawing

diagrams of posets. A drawing of the cover graph of P in the euclidean plane

equipped with a standard cartesian coordinate system (first coordinate axis

horizontal and second coordinate axis vertical) is called a poset diagram (also

a Hasse diagram) when the second coordinate of y is larger than the second

coordinate of x whenever y covers x in P. It is customary to use straight line

drawings for poset diagrams, although this is not really essential. However,

when non-straight line drawings are employed, it is still customary to use
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Fig. 1.1. A Poset and its Comparability and Incomparability Graphs
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Fig. 1.2. A Partially Ordered Set

piece-wise linear edges that flow “downwards” from y to x whenever y covers

x in P.

In Figure 1.4, we show on the left a diagram for the poset (X,P3), where

X = {a, b, c, d, e, f} and P3 is the partial order given in Example 1.2.1. In

the center of Figure 1.4, we show the comparability graph of this poset and

on the right its incomparability graph.

1.5 More Examples of Posets

There are many different settings in which partial orders arise in a natural

way. Here are two such examples.

Example 1.5.1 Let X be any family of sets and set P = {(A,B) ∈ X×X :

A ⊆ B}.

Example 1.5.2 Let X be any set of positive integers and set P = {(m,n) ∈
X ×X : m divides n without remainder}.

However, in general, we will be concerned with posets for which there is

no “natural” explanation for the order. For example, consider the poset

with ground set X = {1, 2, . . . , 18} whose diagram is shown in Figure 1.5.
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When P = (X,P ) is a poset and Y is a nonempty subset of X, the restriction

of P to Y , denoted by P (Y ) (also denoted P |Y ), is a partial order on Y

and we call (Y, P (Y )) a subposet of (X,P ). We also say that (Y, P (Y )) is

the subposet of P generated (also, determined, or induced) by Y . When

the poset remains fixed in a discussion, we will just refer to the subposet

Y . When Y is a proper subset of X, we will speak about the subposet

determined by X − Y as the subposet obtained by removing Y . Also, when

Y = {x}, we will just talk about the subposet obtained by removing the

point x.

A poset P = (X,P ) is called a chain if x is comparable to y in P , for all

x, y ∈ X. When (X,P ) is a chain, we call P a linear order (also, total order)

on X. Througout this monograph, we will use the symbols R, Q, Z and N
to denote the reals, rationals, integers and positive integers, respectively.

Each of these number systems comes equipped with a total order ≤, which

we call the natural order. Accordingly, in discussing a poset whose ground

set is labelled by elements of R, some care should be exercised when using

the < and ≤ notations. For example, for the poset shown in Figure 1.5, we

have 10 < 2 and 7‖18, while 2 < 7 < 10 < 18 in the natural order on R.

A nonempty subset Y ⊆ X is called a chain if the subposet (Y, P (Y )) is

a chain. A one-element chain is said to be trivial, while a chain of two or

more points is nontrivial.

Dually, a poset P = (X,P ) is called an antichain when x and y are

incomparable in P whenever x, y ∈ X and x 6= y. A nonempty subset

Y ⊆ X is called an antichain if the subposet (Y, P (Y )) is an antichain. A

one-element antichain is said to be trivial while antichains of two or more

points are nontrivial. Note that a one-element subset of X is both a chain

and an antichain.

Throughout this monograph, we will use the short form [n] to denote the

n-element set {1, 2, . . . , n}. However, it is customary to use the bold-face

notation n to denote the n-element chain 0 < 1 < 2 < · · · < n− 1. On the

other hand, there is no standard notation for an n-element antichain.

A point x ∈ X is called a maximal point of P if there is no point y ∈ X

with x < y in P . We denote the set of all maximal points of a poset P

by Max(P). Since we use the notation P = (X,P ) for a poset, the set of

maximal elements can also be denoted by Max(X,P ) or just Max(P ). This

convention will be used for all set valued and integer valued functions of

posets.

Similarly, a point x ∈ X is called a minimal point of P if there is no point
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Fig. 1.3. Unlabeled Posets on 5 Points

y ∈ X with x > y in P . We denote the set of all minimal points of a poset

P by Min(P), Min(X,P ) or Min(P ).

An element x ∈ X is called a greatest (or maximum) point of P if y ≤ x

in P for every y ∈ X. Similarly, x is called a least (or minimum) point

of P if y ≥ x in P for every y ∈ X. Note that if X is a finite set, then

Max(P) and Min(P) are always non-empty. On the other hand, posets may

not have greatest points, and they may not have least points. Also, when

X is an infinite set, it may happen that one or both of Max(P) and Min(P)

is empty. For example, the set N of positive integers has a least element

(namely, the positive integer 1), but the set of maximal elements is empty.

The set of all chains in a poset P = (X,P ) is partially ordered by set

inclusion and the maximal elements in this poset are called maximal chains.

A chain C is maximum if no other chain contains more points than C.

Maximal and maximum antichains are defined analogously. Both Max(P )

and Min(P ) are maximal antichains; however, it may happen that neither

is a maximum antichain.

The height of a poset (X,P ) is the number of points in a maximum chain,

and the width is the number of points in a maximum antichain. It is easy

to see that the poset shown in Figure 1.5 has height 5, but it is not so easy

to see that its width is 7. We will revisit this issue in Chapter 9.99.

Let P = (X,P ) and Q = (Y,Q) be posets and let f : X
1–1−−→
onto

Y be an

bijection between the two ground sets. We say f is an isomorphism from

P to Q if x1 ≤ x2 in P if and only if f(x1) ≤ f(x2) in Q. When there is

an isomorphism from P to Q, we say that P is isomorphic to Q and write

P ∼= Q. An isomorphism from P to P is called an automorphism of P, and

an isomorphism from P to a subposet of Q is called an embedding of P in

Q.

The notion of isomorphism leads in a natural way to the concept of an

unlabeled poset. For example, in Figure 1.6, we show the five unlabeled

posets on three points. There are respectively 1, 6, 3, 3 and 6 ways to assign

labels from {1, 2, 3} so there are 19 labeled posets with ground set {1, 2, 3}.
In many settings, we will not distinguish between isomorphic posets, and

we will say that a poset P is contained in Q (also Q contains P) when there
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is an embedding of P in Q. Also, we will frequently abuse notation and

write P = Q when P and Q are isomorphic.

The dual of a partial order P on a set X is denoted by P d and is defined

by P d = {(y, x) : (x, y) ∈ P}. Note that the dual of a partial order is again

a partial order. The dual of the poset P = (X,P ) is denoted by Pd and is

defined by Pd = (X,P d). A poset P is self-dual if P = Pd (of course, here

we really mean P ∼= Pd).

A poset P = (X,P ) is connected if its comparability graph G is connected,

and when P is not connected, a subposet Q = (Y,Q) is called a component

of P when the point set Y of Q induces a component in G. A one-point

component is trivial, and is also called a loose point or an isolated point.

Components of two or more points are nontrivial.

For the poset P = (X,P ) shown in Figure 1.5, note that:

(i) Max(P) = {2, 3, 8, 11, 15, 17}.
(ii) Min(P) = {1, 5, 14, 16}.
(iii) {1, 7, 13, 15} is a maximal chain.

(iv) {6, 8, 9, 10, 14} is a maximum chain, so height(P) = 5.

(v) {2, 3, 7, 8, 18} is a maximal antichain.

(vi) {4, 6, 11, 12, 15, 16, 17} is a maximum antichain, so width(P) = 7.

(vii) P is disconnected and has two components.

A poset P = (X,P ) is finite if the ground set X is finite. In view of

our combinatorial emphasis, we will concentrate almost exclusively on finite

posets in this monograph. Exceptions will include subposets of the real

number system R, and in particular, the rationals Q, the integers Z and the

positive integers N. Also, in Chapter 9.99, we will consider a special class

of posets where the ground set is countably infinite.

1.7 Linear Extensions

Let P and Q be partial orders on a set X. We say Q is an extension of P if

Q ⊆ P ; and we say an extension Q of P is a linear extension if Q is a linear

order on X. The following proposition is trivial for finite sets but involves

set theoretic issues for infinite posets.

Proposition 1.7.1 If P is a partial order on a set X, and (x, y) ∈ Inc(P),

then there exists a linear extension L of P with (y, x) in L.

The proof of Proposition 1.7.1 follows easily from the following somewhat

more technical result.
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Proposition 1.7.2 If P is a partial order on a set X, x, y ∈ X and (x, y) ∈
Inc(P), then the transitive closure of P ∪ {(y, x)} is a partial order on X.

Example 1.7.3 The poset P shown in Figure 1.4 has eleven linear exten-

sions. These are displayed vertically in the following table:

L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11

f f f c f f f c f f c

e e c f e e c f e c f

d c e e d c e e c e e

c d d d c d d d a a a

b b b b a a a a d d d

a a a a b b b b b b b

Here is an important observation, one that we will revisit in Chapter 9.99.

Proposition 1.7.4 Let P = (X,P ) be a poset. Then the family E of all

linear extensions of P is nonempty and P =
⋂
E.

Proof If P is a linear order, then E = {P} and
⋂
E = P . If P is not a linear

order, then for each (x, y) ∈ Inc(P), there exists a linear extension L(x, y)

of P with (y, x) ∈ L. Thus (x, y) 6∈ L. Since Inc(P) is symmetric, it follows

that there is no (x, y) ∈ Inc(P) for which (x, y) ∈
⋂
E . Thus

⋂
E = P .

When P = (X,P ) is a poset, L is a linear extension of P and |X| = n,

there is a natural map hL : X → [n] defined by setting hL(x) = |{y ∈ X :

y ≤ x in L}|. The value hL(x) is called the height of x in L. To illustrate

this elementary, in Example 9.99, the height of e in L1 is 5, while the height

of d in L6 is 3.

1.8 Extensions of a Partial Order

Let P = (X,P ) be a poset and let P denote the family of all extensions of

P (all extensions, not just the linear extensions). Given a set S ⊂ Inc(P),

it is useful to have a test to determine whether there is some Q ∈ P which

contains S. From Proposition 1.7.1, we know the answer is yes when S

consists of a single ordered incomparable pair.

An alternating cycle in P is a sequence {(xi, yi) : 1 ≤ i ≤ k} of ordered

pairs from Inc(P) with yi ≤ xi+1 in P (cyclically†) for i = 1, 2, . . . , k. The

† By the statement yi ≤ xi+1 in P (cyclically) for i = 1, 2, . . . , k, we mean the same thing as
yi ≤ xi+1 in P for i = 1, 2, . . . , k − 1 and yk ≤ x1 in P .
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integer k in this definition is called the length of the cycle. An alternating

cycle is strict if yi ≤ xj in P if and only if j = i + 1 (cyclically) for i, j =

1, 2, . . . , k.

Example 1.8.1 In Figure 1.5, the set S = {(16, 11), (13, 8), (9, 13), (18, 9)}
is an alternating cycle of length 4. It is not strict. However, the set S′ =

{(16, 7), (3, 8), (18, 3)} is a strict alternating cycle of length 3.

It is important to note that when S = {(x1, y1), (x2, y2), . . . , (xk, yk) is

a strict alternating cycle, then {x1, x2, . . . , xk} and {y1, y2, . . . , yk} are k-

element antichains in P.

The following elementary result is due to Trotter and Moore [99].

Proposition 1.8.2 Let P = (X,P ) be a poset and let S ⊂ Inc(P). Then

the following statements are equivalent:

(i) The transitive closure of P ∪ S is not a partial order on X.

(ii) S contains an alternating cycle.

(iii) S contains a strict alternating cycle.

Proof The fact that Statement 3 implies Statement 2 is immediate. State-

ment 2 implies Statement 1 since the transitive closure of P ∪ S would

contain both (x1, y1) and (y1, x1). We now show that Statement 1 implies

Statement 3. Let Q be the transitive closure of P ∪ S. Since Q is both

reflexive and transitive, the fact that it is not a partial order means that

it must violate the antisymmetric property. This means that there is a se-

quence (u1, u2, . . . , um) of points from X (not necessarily distinct) so that

(ui, ui+1) ∈ P ∪S for each i = 1, 2, . . . , n (cyclically). Of all such sequences,

choose one for which the value of m is minimum. Since P is antisymmetric,

we may assume that (u1, u2) ∈ S. Then set x1 = u1 and y1 = u2. Now

suppose we have defined a pair (xi, yi) with yi = uj with 2 ≤ j ≤ m. If

(uj , uj+1) ∈ S, set xi+1 = yi = uj and yi+1 = uj+1. If (uj , uj+1) ∈ P , then

(uj+1, uj+2) ∈ S. In this case, set xi+1 = uj+1 and yi+1 = uj+2. Clearly,

this construction yields a strict alternating cycle contained in S.

1.9 Algebraic Operations and Lattices

Let P = (X,P ) and Q = (Y,Q) be posets. The cartesian product of the two

posets, denoted P×Q, is the poset (X × Y,R), where (x1, y1) ≤ (x2, y2) in

R if and only if x1 ≤ x2 in P and y1 ≤ y2 in Q. We illustrate this definition

in Figure 1.9.
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Let P = (X,P ) and Q = (Y,Q) be posets with X ∩ Y = ∅. The sum of

the two posets, denoted P + Q, is the poset (X ∪ Y, P ∪Q). To emphasize

the requirement that the ground sets be disjoint, this operation is also called

disjoint sum. Of course, when P and Q have overlapping ground sets, we can

still talk about the disjoint sum P + Q by first taking isomorphic copies of

the two posets and artificially making their respective ground sets disjoint.

Here we are again taking advantage of the convention that isomorphic posets

can be considered equal.

With these comments in mind, the following basic proposition is immedi-

ate.

Proposition 1.9.1 Let P, Q and R be posets. Then

(i) P + Q = Q + P.

(ii) P + (Q + R) = (P + Q) + R.

(iii) P×Q = Q×P.

(iv) P× (Q×R) = (P×Q)×R.

(v) P× (Q + R) = (P×Q) + (P×R).

In view of the preceding proposition, it is natural to denote the cartesian

product of n copies of a poset P by Pn. As will be clear, the special case

when P = 2 is particularly important. In Figure 1.9, we show a diagram for

24.

More generally, the poset Rt is just the set of all t-tuples (vectors) of real

numbers with (x1, x2, . . . , xt) ≤ (y1, y2, . . . , yt) in Rt if and only if xi ≤ yi
for all i = 1, 2, . . . , t. So an embedding of a poset P = (X,P ) in Rt assigns

to each x ∈ X a vector (x1, x2, . . . , xt) in Rt so that x ≤ y in P if and only

if xi ≤ yi in R for each i = 1, 2, . . . , t.

Now let P = (X,P ) be a poset and let F = {Qx : x ∈ X} be a family

of posets indexed by the elements in the ground set of P, and for each
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x ∈ X, let Qx = (Yx, Qx). We define the lexicographic sum of F over

P as the poset R = (Z,R) where Z = {(x, yx) : x ∈ X, yx ∈ Yx} and

R =
{(

(x1, y1), (x2, y2)
)
∈ Z × Z : either x1 < x2 or both x1 = x2 and

(y1, y2) ∈ Qx1

}
. We illustrate this defnition with the family of posets in

Figure 1.9.

A lexicographic sum is trivial when either (1) |X| = 1; or (2) |Yx| = 1, for

every x ∈ X. If Condition 1 holds, then the lexicographic sum (Z,R) is iso-

morphic to (Yx, Qx), where x is the unique element of X; and if Condition 2

holds, then (Z,R) is isomorphic to (X,P ). A poset (Z,R) is decomposable

when it is (isomorphic to) a non-trivial lexicographic sum; else, it is in-

decomposable. Note that the only indecomposable disconnected poset is a

2-element antichain.

Let P = (X,P ) be a poset and let S ⊆ X. An element b ∈ X is called

an upper bound for S if s ≤ b in P , for every s ∈ S. An upper bound b for

S is the least upper bound of S, abbreviated l.u.b.(S), provided b ≤ b′ in

P for every upper bound b′ of S. Lower bounds and greatest lower bounds

are defined analogously. A poset P = (X,P ) is called a lattice if every

nonempty subset S ⊆ X has both a least upper bound and greatest lower
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bound. When P = (X,P ) is a lattice, we have natural functions, ∨ and ∧,

from X ×X to X defined by setting

x ∨ y = l.u.b.{x, y} and x ∧ y = g. l. b.{x, y}.

When x, y ∈ X, x ∨ y is called the join of x and y, while x ∧ y is called the

meet of x and y.

Lattices always have least and greatest elements, and when the lattice

contains more than one point, the least element is traditionally called zero,

denoted 0, and the greatest element is one, denoted 1.

When X is a set, the family of all subsets of X forms a lattice and is

called a subset lattice. Note that 2n is isomorphic to the family of subsets

of {1, 2, . . . , n} ordered by inclusion, and the elements can then be denoted

using subsets of [n] or as 0–1 strings (bit strings) of length n. The cover

graph of 2n is called an n-cube and is frequently denoted Qn.

When P = (X,P ) and Q = (Y,Q) are posets, a function f : X → Y

is order preserving (respectively, order reversing) if x1 ≤ x2 in P implies

f(x1) ≤ f(x2) (respectively, f(x1) ≥ f(x2)) in Q for all x1, x2 ∈ X. Let

P = (X,P ) and Q = (Y,Q) be posets. Then we let QP denote the poset

whose ground set consists of all order preserving functions from P to Q.

The partial order is then defined by setting f1 ≤ f2 in QP if and only if

f1(x) ≤ f2(x) in Q for every x ∈ X.

Proposition 1.9.2 Let P, Q and R be posets. Then

QP+R = QP ×QR.

A lattice is distributive if it satisfies the following two properties:

(i) x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ y).

(ii) x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ y).

When P = (X,P ) is a poset, it is easy to see that the poset 2P is a

distributive lattice. For the three point poset P shown in the left part of

Figure 1.9, there are five order preserving functions from P to 2: f1, f2, f3,

f4 and f5, where

(i) f1(a) = f1(b) = f1(c) = 1.

(ii) f2(a) = f2(b) = 1 and f2(c) = 0.

(iii) f3(a) = 1 and f3(b) = f3(c) = 0.

(iv) f4(b) = 1 and f4(b) = f4(c) = 0.

(v) f5(a) = f5(b) = f5(c) = 0.

In fact, the preceding example characterizes distributive lattices.
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Fig. 1.7. A Distributive Lattice

Fig. 1.8. Two Non-Distributive Lattices

Proposition 1.9.3 A finite lattice L is distributive if and only if there is a

finite poset P so that L = 2P.

When P = (X,P ) is a poset, a subset D ⊆ is called a down set in P if

y ∈ D whenever x ∈ D and x ≤ y in P . Up sets are defined analogously.

It is easy to see that the characterization of distributive lattices given in

Proposition 1.9.3 can be restated in terms of down sets.

Proposition 1.9.4 A finite lattice L is distributive if and only if there is

a finite poset P so that L is isomorphic to the family of all down sets of P

partially ordered by inclusion.

There is still another way to characterize distributive lattices, one that

is illustrative of a number of results in this monograph. First, note that

neither of the lattices shown in Figure 1.9 are distributive.

Proposition 1.9.5 A lattice L is distributive if and only if it does not

contain either of the lattices shown in Figure 1.9 as sublattices.

Exercises

1.1 For n = 4, 5, how many posets are there with ground-set X =

{1, 2, 3, . . . , n}?
1.2 For n = 4, 5, how many unlabelled posets on n points?

1.3 Show that every finite poset has a minimal element.
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1.4 Let (X,≤) be any poset. Show that there is some collection F of

sets such that (X,≤) is isomorphic to (F ,⊆).

1.5 Let (X,≤) be any poset. Show that there is a set S of positive

integers and a bijection f : X
1–1−−→
onto

S so that x ≤ y if and only if

f(x) divides f(y) without remainder.

1.6 Let F = {[ax, bx] : x ∈ X} be a family of closed intervals of R.

Define a strict partial order P on F by [ax, bx] < [ay, by] in P if and

only if bx < ay in R. Show that the poset (F , P ) does not contain a

subposet isomorphic to 2 + 2.

1.7 Show that the set of all partitions of a set Y , with order-relation given

by refinement, forms a lattice. Show however that, for |Y | ≥ 3, this

lattice is not distributive.

1.8 Suppose that L1 and L2 are distributive lattices. Show that the

cartesian product L1 × L2 is also a distributive lattice.

1.9 Suppose that L is a finite lattice satisfying either of the two require-

ments given in the definition of a distributive lattice, then it also

satisfies the other requirement.

1.10 For each positive integer m, construct a poset with exactly m linear

extensions.

1.11 For which numbers m ≤ 10 does there exist a poset with exactly m

extensions? (Don’t forget that a poset is an extension of itself.)

1.12 Prove Proposition 1.7.2 by showing that the transitive closure of

P ∪{(x, y)} is a partial order when x and y are incomparable points

in a poset P = (X,P ).

1.13 For any set X with at least two elements, let B(X) be the set of all

partial orders on X. The B is partially ordered by inclusion, and

the maximal elements of the resulting posets are the linear orders on

X. Attach a new element to this poset and make it greater than all

other elements. Explain why the resulting poset is not a lattice.

1.14 For the poset described in the preceding exercise, show that if P < Q,

then the restriction to all partial orders R on X with P ⊆ R ⊆ Q is

a lattice. Is it distributive?

1.15 For each i = 0, 1, . . . , n− 1, let Qi be a two element antichain. Then

let R be the lexicographic sum of the family F = {Qi : 0 ≤ i ≤ n−1}
over n. How many linear extensions does R have?

1.10 Notes and References

Issues which need to be addressed.
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(i) Should there be an abstract? WTT: Yes, and one has been provided.

It is called a “Chapter Overview.”

(ii) Should there be references? WTT: Yes! Those now lised are very

incomplete.

(iii) What about some historical remarks? WTT: Yes!
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