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Abstract. There is a natural way to associate with a posetP a hypergraphHP, called the hypergraph
of incomparable pairs, so that the dimension ofP is the chromatic number ofHP. The ordinary
graphGP of incomparable pairs determined by the edges inHP of size 2 can have chromatic number
substantially less thanHP. We give a new proof of the fact that the dimension ofP is 2 if and only
if GP is bipartite. We also show that for eacht ≥ 2, there exists a posetPt for which the chromatic
number of the graph of incomparable pairs ofPt is at most 3t − 4, but the dimension ofPt is at least
(3/2)t−1. However, it is not known whether there is a functionf : N → N so that ifP is a poset
and the graph of incomparable pairs has chromatic number at mostt , then the dimension ofP is at
mostf (t).
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1. Introduction

There are many interesting analogies between dimension theory for finite par-
tially ordered sets (posets) and chromatic number for finite graphs. In addition,
researchers have quite frequently applied results and techniques from graph theory
to research problems for posets. For example, the fact that there exist graphs with
large girth and large chromatic number has been used to show that there exist
posets with large dimension and large girth. As a second example, the dimension
of interval orders is closely linked to the chromatic number of double shift graphs
(see Füredi et al. [3]). As a third example, Yannakakis [9] used a connection with
graph coloring to show that the question of determining whether the dimension of
a poset is at mostt is NP-complete for everyt ≥ 3.

In this paper, we study a very natural connection between dimension and chro-
matic number. With a finite posetP, we will associate a hypergraphHP so that the
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dimension ofP is equal to the chromatic number ofHP. This hypergraph is called
the hypergraph of incomparable pairs. The edges of size 2 inHP determine an
ordinary graphGP, which is called thegraph of incomparable pairs.

It is natural to ask whether there is any relationship between the dimension of a
poset and the chromatic number of its graph of incomparable pairs. The answer is
yes – at least when the graph is bipartite. The following theorem was first proved by
O. Cogis [1] using a variant of dimension based on the concept of Ferrer’s relations.
In Section 5, we will give a new proof of this result using only familiar concepts in
dimension theory.

THEOREM 1.1. LetGP be the graph of incomparable pairs of a posetP which is
not a total order. Then the dimension ofP is 2 if and only if the chromatic number
of GP is 2.

When the graph of incomparable pairs of a posetP is not bipartite, the dimension
of P can be much larger. In Section 4, we will construct for eacht ≥ 2 a posetPt
for which the chromatic number of the graph of incomparable pairs ofPt is at most
3t − 4 and the dimension ofPt will be at least(3/2)t−1.

As a consequence, it is natural to pose the following question.

QUESTION 1.2. Does there exist a functionf : N → N so that ifP is a poset
and the graph of incomparable pairs ofP has chromatic number at mostt , then the
dimension ofP is at mostf (t).

If such a function exists, then our example shows that it must grow fairly rapidly,
at least exponentially. However, we tend to believe that there is no such function.
In particular, we believe that there exist posets of arbitrarily large dimension for
which the graph of incomparable pairs is 3-colorable.

2. Notation and Background Material

Throughout this paper, we consider apartially ordered set(or poset) P = (X, P )
as a structure consisting of a setX and a reflexive, antisymmetric and transitive
binary relationP onX. We callX theground setof the posetP, and we callP a
partial order onX. The notationsx ≤ y in P , y ≥ x in P and(x, y) ∈ P are used
interchangeably, and the reference to the partial orderP is often dropped when its
definition is fixed throughout the discussion. We writex < y in P andy > x in
P whenx ≤ y in P andx 6= y. Whenx, y ∈ X, (x, y) /∈ P and(y, x) /∈ P , we
sayx andy are incomparable and writex‖y in P . WhenP = (X, P ) is a poset,
we call the partial orderP d = {(y, x) : (x, y) ∈ P } the dual of P and we let
Pd = (X, P d).

A partial orderP on a setX is called alinear order (also, atotal order) when
no two distinct points ofX are incomparable. IfP andQ are partial orders on the
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same ground set, we sayQ is anextensionof P if P ⊆ Q, and we callQ a linear
extensionof P if Q is a linear order and it is also an extension ofP .

If R is a family of linear extensions ofP , we callR arealizerof P if P = ⋂R,
i.e., for allx, y ∈ X, x ≤ y in P if and only if x ≤ y in L for everyL ∈ R. The
dimensionof the posetP = (X, P ), denoted dim(P) or dim(X, P ), is the least
positive integert so thatP has a realizerR = {L1, L2, . . . , Lt} of cardinalityt . In
this article, we will need only a few basic facts about dimension, but the interested
reader is referred to Trotter’s monograph [4] and survey articles [5, 6] and [7] for
additional information.

Assuming some basic familiarity with concepts for posets such as chains, an-
tichains, Cartesian products and disjoint sums, we summarize some elementary
properties of dimension in the following propositions, referring the reader to [4]
for proofs and references.

PROPOSITION 2.1.LetP= (X, P ) andQ = (Y,Q) be posets. Then:

(1) dim(P+Q) = max{2,dim(P),dim(Q)}.
(2) dim(P × Q) ≤ dim(P) + dim(Q), with equality holding ifP and Q have

greatest and least elements.
(3) The removal of a point fromP decreasesdim(P) by at most one.
(4) If A is a maximum antichain inP, thendim(P) ≤ |A| anddim(P) ≤ max{2,
|X −A|}.

(5) If A is a maximal antichain inP and X − A 6= ∅, then dim(P) ≤ 1 +
2width(X −A,P (X −A)).

(6) If A is the set of maximal elements ofP andX − A 6= ∅, thendim(P) ≤
1+ width(X −A,P (X −A)).

(7) dim(P) = dim(Pd).

Let P = (X, P ) be a poset, and letF = {Qx = (Yx,Qx) : x ∈ X} be a family of
posets indexed by the elements ofX. Define thelexicographic sumof F overP,
denoted

∑
x∈P F , as the posetQ = (Y,Q) whereY = {(x, y) : x ∈ X, y ∈ Yx}

and(x1, y1) < (x2, y2) in Q if and only if x1 < x2 in P , or if both x1 = x2 and
y1 < y2 inQx1. With this definition, a disjoint sum is just a lexicographic sum over
a two-element antichain.

Here is the general formula for dimension and lexicographic sums (see [4]).

PROPOSITION 2.2.Let P = (X, P ) be a poset, and letF = {Qx = (Yx, Px) :
x ∈ X} be a family of posets. Then

dim

(∑
x∈P

F

)
= max{dim(P),max{dim(Qx) : x ∈ X}}. (1)

A lexicographic sum
∑

x∈P F is trivial if either P has only one point, or every
poset inF is a one point poset; otherwise the sum isnon-trivial. A poset isde-
composableif it is isomorphic to a non-trivial lexicographic sum; otherwise it is
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indecomposable. A poset ist-irreducible if it has dimensiont but the removal of
any point leaves a subposet of dimensont − 1 (this is the analogue of a critical
graph). Finally, a poset isirreducible if it is t-irreducible for somet ≥ 2. Evi-
dently, every irreducible poset is indecomposable, a fact which will be exploited
later.

Given a posetP= (X, P ), let inc(P) = {(x, y) ∈ X ×X : x‖y in P }. Then let
L be a linear extension ofP . We sayL reversesthe incomparable pair(x, y) when
x > y in L. Let S ⊂ inc(P). We say thatL reversesS whenx > y in L, for every
(x, y) ∈ S. Finally, if R is a family of linear extensions ofP andS ⊂ inc(P), we
sayR reversesS if each pair ofS is reversed by someL in R.

Note that a familyR of linear extensions ofP is a realizer ofP if and only
if for every (x, y) ∈ inc(P), there existsL ∈ R so thatx > y in L, i.e.,R is a
realizer ofP if and only if it reverses the set of all incomparable pairs. For this
reason, it is convenient to have a test which determines whether there is a linear
extension reversing a given subsetS ⊂ inc(P).

For an integerk ≥ 2, a subsetS = {(xi, yi) : 1 ≤ i ≤ k} ⊂ inc(P) is called
an alternating cyclewhen xi ≤ yi+1 in P , for all i = 1,2, . . . , k. In this last
definition, the subscripts are interpreted cyclically, i.e.,yk+1 = y1. An alternating
cycleS = {(xi, yi) : 1 ≤ i ≤ k} is strict if xi ≤ yj in P if and only if j = i + 1,
for all i, j = 1,2, . . . , k. When an alternating cycle is strict, the following three
statements hold:

(1) The elements in{x1, x2, . . . , xk} form ak-element antichain.
(2) The elements in{y1, y2, . . . , yk} form ak-element antichain.
(3) If i, j ∈ [k] andxi is comparable toyj , thenj = i + 1.

In Figure 1, we show an alternating cycle of length 4 while Figure 2 illustrates a
strict alternating cycle of length 3. The following elementary result is due to Trotter
and Moore [8]. See [4] for a short proof and a number of applications.

THEOREM 2.3. Let P = (X, P ) be a poset and letS ⊆ inc(P). Then the follow-
ing statements are equivalent.

Figure 1. An alternating cycle of length 4.
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Figure 2. A strict alternating cycle of length 3.

(1) There exists a linear extensionL of P which reversesS.
(2) S does not contain an alternating cycle.
(3) S does not contain a strict alternating cycle.

3. Graphs, Hypergraphs and Critical Pairs

Evidently, a poset has dimension 1 if and only if it is a linear order, so it makes
sense to restrict our attention to posets which are not linear orders. LetP= (X, P )
be any such poset. Then we associate withP a hypergraphHP, called thehy-
pergraph of incomparable pairs, defined as follows. The vertices ofHP are the
incomparable pairs in the posetP. The edges ofHP are those setsS of incomparable
pairs satisfying:

(1) No linear extension ofP reverses all incomparable pairs inS.
(2) If T is a proper subset ofS, then there is a linear extension ofP which reverses

all incomparable pairs inT .

Note that the edges of the hypergraphHP correspond to strict alternating cycles.
Then letGP denote the ordinary graph determined by all edges of size 2 inHP. The
following proposition is immediate.

PROPOSITION 3.1.Let P = (X, P ) be a poset and letHP and GP denote the
hypergraph and graph of incomparable pairs, respectively. Then

dim(P) = χ(HP) ≥ χ(GP).

Call a pair(x, y) ∈ inc(P) a critical pair if u < x in P impliesu < y in P and
v > y in P impliesv > x in P , for all u, v ∈ X. Then let crit(P) denote the set of
all critical pairs. The following elementary proposition serves to explain why the
concept of a critical pair is important to the study of realizers.

PROPOSITION 3.2.LetR be a family of linear extensions of a partial orderP on
a ground setX. ThenR is a realizer ofP if and only if for every(x, y) ∈ crit(P),
there exists someL ∈ R so thatx > y in L.

In other words, a familyR of linear extensions is a realizer if and only if it reverses
the set of critical pairs, and the dimension ofP is just the minimum size of a
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family of linear extensions reversing all critical pairs. Accordingly, it makes sense
to define thehypergraph of critical pairsHc

P as the subhypergraph ofHP induced
by the critical pairs. Similarly, we define thegraph of critical pairsGc

P as the
subgraph ofGP induced by the critical pairs. The following lemma follows easily
from Proposition 3.2.

LEMMA 3.3. For every posetP= (X, P ),
dim(P) = χ(HP) = χ(Hc

P) ≥ χ(GP) = χ(Gc
P).

For those readers who are not familiar with posets and dimension, we present
four examples to illustrate the properties of the graphs and hypergraphs we have
introduced in this section.

For an integern ≥ 3, let Sn denote the poset of height two withn minimal
elementsa1, a2, . . . , an, n maximal elementsb1, b2, . . . , bn and orderingai < bj
if and only if i 6= j . We callSn thestandard exampleof ann-dimensional poset.
The diagram forS5 is shown in Figure 3.

EXAMPLE 3.4. The hypergraph of critical pairs of the standard exampleSn is
just an ordinary graph, namely the complete graph onn vertices.

EXAMPLE 3.5. In Figure 4, we show a 3-dimensional poset called the “chevron.”
For this poset, the hypergraph of critical pairs is again an ordinary graph – a cycle
on 5 vertices.

EXAMPLE 3.6. A poset known as the “spider” is shown in Figure 5. The hyper-
graph of critical pairs contains two edges of size 3. However, the graph of critical
pairs for the spider is an odd cycle on 9 vertices.

4. The Role of the Hypergraph Edges

In this section, we present an example which serves to illustrate the essential role
of the hypergraph edges (those of size at least 3) in determining the dimension of
a poset.

EXAMPLE 4.1. For each integert ≥ 2, we construct a posetPt for which the
chromatic number of the graph of incomparable pairs is at most 3t − 4. However,
the dimension ofP will be at least(3/2)t−1.

Figure 3. The standard exampleS5.
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Figure 4. The chevron and its hypergraph of critical pairs.

Figure 5. The spider, a 3-dimensional poset.

We proceed by induction ont . For t = 2, we takeP2 as the height 2 poset having
three minimal elementsx1, x2 andx3; three maximal elementsy1, y2 andy3; with
comparabilitiesx1 < y2, x2 < y3 andx3 < y1.

P2 has 6 critical pairs. Set

W2 = {(x1, y1), (x2, y2), (x3, y3)} and W ′2 = {(x1, y3), (x2, y1), (x3, y2)}.
Then

(1) crit(P2) = W2 ∪W ′2,
(2) W2 andW ′2 are independent in the graph of critical pairs, and
(3) W2 andW ′2 are strict alternating cycles in the hypergraph of critical pairs.

As a consequence, the chromatic number of the graph of critical pairs is 2= 3·2−4,
as required. Now the dimension ofP2 is also 2. Also note that all critical pairs
are min-max pairs. However, to set up the induction, we observe that the setW2

contains 3= 32−1 critical pairs and that no linear extension ofP can reverse more
than 2= 22−1 of them.

Now suppose that we have constructedPt for somet ≥ 2. For inductive pur-
poses, we suppose that

(1) All critical pairs ofPt are min-max pairs;
(2) The chromatic number of the graph of critical pairs ofPt is at most 3t − 4;
(3) Pt contains a setWt of critical pairs, with|Wt | = 3t−1, and no linear extension

reverses more than 2t−1 of the pairs inWt .

Note that by virtue of the third of these properties, we know that the dimension of
Pt is at least(3/2)t−1.

We then constructPt+1 by starting with three disjoint copiesQ1, Q2 andQ3

each isomorphic toPt . Then add comparabilities to make each minimal element of
Qi less than each maximal element ofQi+1 (cyclically). It is easy to see that the
critical pairs inPt+1 are all min-max pairs, so that property (1) holds.

We next show that the graph of critical pairs ofPt+1 has chromatic number at
most 3(t + 1)− 4. To accomplish this, color all critical pairs in eachQi , using the
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colors 1,2, . . . ,3t − 4, using a good coloring ofPt as a model. This is allowable
since no critical pair inQi is adjacent to a critical pair inQj when i 6= j . Then
color all critical pairs of the form(x, y) wherex is a minimal element inQi+1 and
y is maximal inQi with color 3t − 4+ i for i = 1,2,3. This shows that property
(2) holds.

Next, letWt+1 be the union of the critical pairs in the three copies ofWt so that
|Wt+1| = 3 · 3t−1 = 3t as required. Then note that no linear extension ofPt+1

reverses critical pairs in all three copies ofPt , so that no linear extension ofPt+1

reverses more than 2· 2t−1 = 2t pairs fromWt+1. Thus property (3) holds, and we
have verified that the construction works as claimed.

5. Proof of Theorem 1

Let P = (X, P ) be a poset which is not a linear order. If dim(P) = 2, then it
follows trivially that the chromatic number of both graphsGP andGc

P is 2.
Now suppose thatχ(GP) = χ(Gc

P) = 2. We show that dim(P) = 2. We
argue by contradiction. Suppose this statement is false. Of all counterexamples,
choose one for which the cardinality ofX is minimum. Then it follows thatP is
3-irreducible. In turn, this implies thatP is indecomposable.

Now letφ be any proper 2-coloring of the graphGP of incomparable pairs ofP,
say using the colors in{1,2}. For eachi = 1,2, letSi denote the set of critical pairs
which are assigned colori by φ. Since dim(P) = 3, one ofS1 andS2 contains a
strict alternating cycle. Of all strict alternating cycles contained in one of the color
classes, consider those of minimum length and let this minimum length bek. For
each strict alternating cycleS = {(xi, yi) : 1 ≤ i ≤ k} contained in a color class,
let f (S) count the number of points in

k⋃
i=1

{u : xi ≤ u ≤ yi+1}.

We then choose a strict alternating cycleS of lengthk contained in a single color
class for whichf (S) is as large as possible. Without loss of generality, we may
assume thatS is contained in color class 1.

CLAIM 1. The lengthk of the alternating cycleS is 3.
Proof. First note thatk ≥ 3, for if k = 2, then the vertices inS are adjacent in

bothGP andHP. Now suppose thatk ≥ 4. It follows that for eachi = 1,2, . . . , k,
xi is incomparable with bothyi−1 andyi+2. So we may choose critical pairs(ui, vi)
and (wi, zi) with ui ≤ xi , wi ≤ xi, yi−1 ≤ vi and yi+2 ≤ zi. For eachi =
1,2, . . . , k, note that(wi, zi) is adjacent to(xi+1, yi+1) so each(wi, zi) is assigned
color 2.

We claim that for eachi = 1,2, . . . , k, the critical pair(ui, vi) is assigned
color 2. For suppose that some(ui, vi) is assigned color 1. Then{(ui, vi)} ∪ {(xj ,
yj ) : 1 ≤ j ≤ k, j 6= i, i − 1} forms an alternating cycle of lengthk − 1. Any
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minimal length alternating cycle among thesek−1 pairs is strict, thus contradicting
the choice ofk. So we conclude that each pair(ui, vi) is assigned color 2.

Then observe that for eachi = 1,2, . . . , k, ui+1 ≤ zi, wi ≤ zi−1 andwi−1 ≤
vi+1. It follows that {(ui+1, vi+1), (wi, zi), (wi−1, zi−1)} is an alternating cycle of
length 3 and all three pairs are assigned color 2. This showsk = 3, as claimed.2
CLAIM 2. For eachi = 1,2,3, the incomparable pair(xi, yi−1) is a critical pair.

Proof.S′ = {(ui, vi) : 1≤ i ≤ 3} is a strict alternating cycle andf (S ′) ≥ f (S).
Furthermore,f (S′) > f (S) unlessui = xi andyi−1 = vi for i = 1,2,3. 2
Now consider the subposetQ induced by the points in the strict alternating cycleS.
We observe thatQ is a disjoint sum of three connected subposetsQ1, Q2 andQ3,
each of height at most 2. Furthermore, we may label these three subposets so that:

(1) For eachi = 1,2,3, if a is minimal in Qi andb is maximal inQi+1, then
(a, b) is a critical pair assigned color 1 byφ.

(2) For eachi = 1,2,3, if a is minimal in Qi andb is maximal inQi−1, then
(a, b) is a critical pair assigned color 2 byφ.

Now let Q0 be the largest subposet ofP consisting of three non-empty connected
componentsQ1, Q2, Q3, each of height at most 2, satisfying conditions (1) and (2)
as given above. Then letY consist of all points in the ground setX which are not in
the subposetQ0. SinceP is indecomposable, we know thatQ0 is a proper subposet
of P, i.e.,Y 6= ∅. Furthermore, there exists some pointd ∈ Y which is comparable
to some but not all points ofQ0.

CLAIM 3. Any point inY which is less than some minimal point inQ0 is less than
all points of Q0. Dually, any point inY which is greater than any maximal point in
Q0 is greater than all points ofQ0.

Proof. Suppose thaty ∈ Y and thaty is less than some minimal point ofQ0.
Without loss of generality, we may assume thaty < a1 for some minimal point
a1 of the connected subposetQ1 of Q0. We show thaty < a2 for every minimal
elementa2 of Q2. Suppose to the contrary that there is some minimal elementa2

of Q2 for whichy‖a2.
Let b3 be any maximal point inQ3. Then we know that(a2, b3) is a critical

pair assigned color 1 byφ. Also, since(a1, b3) is critical andy < a1, we now that
y < b3.

Now choose a maximal pointb1 in Q1 with a1 ≤ b1. Then we know that(a2, b1)

is critical and is assigned color 2 byφ. It follows that the incomparable pair(y, a2)

is adjacent to both(a2, b3) and(a2, b1) in GP, i.e., (y, a2) is adjacent to vertices
in each of the two color classes, which is impossible. The contradiction completes
the proof of the assertion thaty is less than every minimal point inQ2. But this
argument is cyclic, so we may conclude thaty is less than all minimal elements in
all three components. In turn, it follows thaty is less than all elements ofQ0 as
claimed. 2
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We are now ready to complete the proof of our theorem. Choose a pointy ∈ Y
which is comparable with some but not all points inQ0. Without loss of generality,
we may assume that

(1) y is incomparable with all minimal points ofQ0.
(2) There is a maximal pointb1 in Q1 so thaty < b1.
(3) Any point less thany is comparable with all points ofQ0.

We will complete the proof by showing that the subposetQ0 is not maximal. To
accomplish this, we show that

• y is incomparable with all points inQ2 andQ3.
• For each maximal pointb2 in Q2, the incomparable pair(y, b2) is critical and

assigned color 1 byφ.
• For each maximal pointb3 in Q2, the incomparable pair(y, b3) is critical and

assigned color 2 byφ.

Suppose first thaty is comparable with maximal points in all three components
of Q0. Then none of the maximal points comparable toy can also be a minimal
point. It follows thatP contains the 3-dimensional spider (see Figure 5) and thus
χ(GP) ≥ 3. This is a contradiction.

Now suppose thaty is comparable with maximal points in exactly two of the
three components ofQ0, sayQ1 andQ2. Choose a maximal pointb2 in Q2 with
y < b2. Then leta3 be any minimal element ofQ3. It follows that the incomparable
pair (y, a3) is adjacent to both(a3, b1) and(a3, b2) in GP, butφ assigns different
colors to these two critical pairs. The contradiction shows thaty is comparable only
with points fromQ1 and incomparable with all points inQ2 andQ3.

We next show that for each maximal pointb2 in Q2, the incomparable pair
(y, b2) is critical and assigned color 1 byφ. Let u′ < y. Thenu′ is less than all
points ofQ0 by property (3) above. In particular, this showsu′ < b2. On the other
hand, letb > b2. Then by Claim 3, we know thatb is greater than all points of
Q0. Thusb > b1 > y and b > y. Thus (y, b2) is critical. Now leta2 be any
minimal element ofQ2 with a2 < b2. Then(a2, b1) is critical and assigned color 2
by φ. Since(a2, b1) and(y, b2) are adjacent, we conclude thatφ assigns color 1 to
(y, b2).

The argument to show that for each maximal pointb3 of Q3, the incomparable
pair (y, b3) is critical and assigned color 2 byφ is dual. We conclude that we
can addy to Q1 which contradicts the assumption that the cardinality ofQ0 is
maximum. With this remark, the proof of Theorem 1.1 is complete.

6. Some Open Problems

Originally, we thought that with just a little attention to detail, we could modify
the construction presented in Section 4 to settle Question 1.2 in the negative. After



DIMENSION AND GRAPH COLORING 177

spending some time on this effort, we feel that it may take a new idea. We still
think it would be quite surprising should this question have an affirmative answer.

Among the several interesting open problems relating graph coloring and po-
sets, we want to mention one very interesting problem involving planar graphs
and a combinatorial connection discussed briefly in Section 1. With a graphG =
(V,E), we associate a posetAG, called theadjacency posetof G, and defined
as follows.AG is a height 2 poset contain an incomparable min-max pair(x′, x′′)
for every vertexx ∈ V . For each edgee = {x, y}, the posetAG contains the order
relationsx′ < y′′ andy′ < x′′. It is straightforward to verify thatχ(G) ≤ dim(AG).

The dimension of the incidence poset of a graph can be bounded from above
by a function of the chromatic number of the graph. However, this is not true for
adjacency posets. For example, the adjacency poset of a bipartite graph can have
arbitrarily large dimension – consider the cover graphs of standard examples. Also,
since there exist graphs with large girth and large chromatic number, taking the
adjacency poset, we see that there exist posets with large dimension for which the
comparability graph has large girth.

Here is one interesting class of graphs for which the dimension of adjacency
posets is bounded. The proof of the following theorem is given in [2].

THEOREM 6.1. If AG is the adjacency poset of a planar graph, thendim(AG)

≤ 10.

From below, we can show that there exists a planar poset whose adjacency poset
has dimension 5. Perhaps this is the right upper bound for Theorem 6.1.
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