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Abstract. There is a natural way to associate with a pésathypergraptip, called the hypergraph
of incomparable pairs, so that the dimensionPois the chromatic number dfip. The ordinary
graphGp of incomparable pairs determined by the edgad of size 2 can have chromatic number
substantially less thaHp. We give a new proof of the fact that the dimensiorPat 2 if and only

if Gp is bipartite. We also show that for eack» 2, there exists a pos€% for which the chromatic
number of the graph of incomparable pairdpfis at most 3 — 4, but the dimension d?; is at least
(3/2)'~1. However, it is not known whether there is a functisgnN — N so that ifP is a poset
and the graph of incomparable pairs has chromatic number atstbsn the dimension d? is at
most 1 (¢).
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1. Introduction

There are many interesting analogies between dimension theory for finite par-
tially ordered sets (posets) and chromatic number for finite graphs. In addition,
researchers have quite frequently applied results and techniques from graph theory
to research problems for posets. For example, the fact that there exist graphs with
large girth and large chromatic humber has been used to show that there exist
posets with large dimension and large girth. As a second example, the dimension
of interval orders is closely linked to the chromatic number of double shift graphs
(see Furedi et al. [3]). As a third example, Yannakakis [9] used a connection with
graph coloring to show that the question of determining whether the dimension of
a poset is at mostis NP-complete for every > 3.

In this paper, we study a very natural connection between dimension and chro-
matic number. With a finite pos@, we will associate a hypergrapte so that the

* The research of the second author is supported in part by the Office of Naval Research and the
Deutsche Forschungsgemeinschaft.



168 STEFAN FELSNER AND WILLIAM T. TROTTER

dimension ofP is equal to the chromatic number ldf. This hypergraph is called
the hypergraph of incomparable pair§he edges of size 2 ihlp determine an
ordinary graphGp, which is called theyraph of incomparable pairs

It is natural to ask whether there is any relationship between the dimension of a
poset and the chromatic number of its graph of incomparable pairs. The answer is
yes —at least when the graph is bipartite. The following theorem was first proved by
0. Cogis [1] using a variant of dimension based on the concept of Ferrer’s relations.
In Section 5, we will give a new proof of this result using only familiar concepts in
dimension theory.

THEOREM 1.1. LetGp be the graph of incomparable pairs of a poBawvhich is
not a total order. Then the dimension Bfis 2 if and only if the chromatic number
of Gp is 2.

When the graph of incomparable pairs of a pd3&t not bipartite, the dimension
of P can be much larger. In Section 4, we will construct for each2 a poseP,
for which the chromatic number of the graph of incomparable paifs &f at most
3t — 4 and the dimension d¥, will be at least(3/2)" .

As a consequence, it is natural to pose the following question.

QUESTION 1.2. Does there exist a functiofi: N — N so that ifP is a poset
and the graph of incomparable pairs Bfhas chromatic number at mastthen the
dimension oP is at mostf (z).

If such a function exists, then our example shows that it must grow fairly rapidly,

at least exponentially. However, we tend to believe that there is no such function.
In particular, we believe that there exist posets of arbitrarily large dimension for
which the graph of incomparable pairs is 3-colorable.

2. Notation and Background Material

Throughout this paper, we considepartially ordered se{or pose} P = (X, P)
as a structure consisting of a Sétand a reflexive, antisymmetric and transitive
binary relationP on X. We call X the ground setof the poseP, and we callP a
partial orderon X. The notations < yin P, y > x in P and(x, y) € P are used
interchangeably, and the reference to the partial o”disr often dropped when its
definition is fixed throughout the discussion. We write< y in P andy > x in
P whenx < yin P andx # y. Whenx,y € X, (x,y) ¢ P and(y,x) ¢ P, we
sayx andy are incomparable and write|y in P. WhenP = (X, P) is a poset,
we call the partial ordeP? = {(y,x) : (x,y) € P} thedual of P and we let
PY = (X, PY).

A partial orderP on a setX is called ainear order (also, atotal order) when
no two distinct points ofX are incomparable. IP and Q are partial orders on the
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same ground set, we s@¥is anextensiorof P if P C Q, and we callQ alinear
extensiorof P if Q is alinear order and it is also an extensionfof

If R is afamily of linear extensions df, we call.R arealizerof P if P = [ R,
ie., forallx,y € X,x < yin Pifandonlyifx < yin L foreveryL € R. The
dimensionof the posetP = (X, P), denoted dinP) or dim(X, P), is the least
positive integer so thatP has arealizelR = {L4, Lo, ..., L;} of cardinalityz. In
this article, we will need only a few basic facts about dimension, but the interested
reader is referred to Trotter's monograph [4] and survey articles [5, 6] and [7] for
additional information.

Assuming some basic familiarity with concepts for posets such as chains, an-
tichains, Cartesian products and disjoint sums, we summarize some elementary
properties of dimension in the following propositions, referring the reader to [4]
for proofs and references.

PROPOSITION 2.1.LetP = (X, P) andQ = (Y, Q) be posets. Then:

(D dim(P + Q) = maxX2, dim(P), dim(Q)}.

(2 dim(P x Q) < dim(P) + dim(Q), with equality holding ifP and Q have
greatest and least elements.

(3) The removal of a point frorR decreaseslim(P) by at most one.

(%) If Ais a maximum antichain iR, thendim(P) < |A| anddim(P) < max2,
|X — Al}.

(5) If A is a maximal antichain irP and X — A # @, thendim(P) < 1+
2width(X — A, P(X — A)).

(6) If A is the set of maximal elementsfand X — A # @, thendim(P) <
1+ width(X — A, P(X — A)).

(7) dim(P) = dim(P9).

LetP = (X, P) be a poset, and lef = {Q, = (Y., Q,) : x € X} be a family of
posets indexed by the elementsof Define thelexicographic sunof F overP,
denoted) | _, F, as the pose@ = (¥, Q) whereY = {(x,y) : x € X,y € Y.}
and(x1, y1) < (x2, yp) in Q ifand only if x; < x5 in P, or if bothx; = x, and
y1 < y2in Q,,. With this definition, a disjoint sum is just a lexicographic sum over
a two-element antichain.

Here is the general formula for dimension and lexicographic sums (see [4]).

PROPOSITION 2.2.LetP = (X, P) be a poset, and leF = {Q, = (Y,, P,) :
x € X} be a family of posets. Then

dim(Z?) = maxdim(P), maxdim(Q,) : x € X}}. 1)

xeP

A lexicographic sum)_ ¥ is trivial if either P has only one point, or every
poset in¥ is a one point poset; otherwise the summan-trivial. A poset isde-
composablef it is isomorphic to a non-trivial lexicographic sum; otherwise it is
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indecomposableA poset ist-irreducible if it has dimensiory but the removal of
any point leaves a subposet of dimengon 1 (this is the analogue of a critical
graph). Finally, a poset igreducible if it is z-irreducible for some > 2. Evi-
dently, every irreducible poset is indecomposable, a fact which will be exploited
later.

Given a poseP = (X, P), letinc(P) = {(x,y) € X x X : x|ly in P}. Then let
L be alinear extension df. We sayL reverseshe incomparable paitc, y) when
x > yin L. LetS C inc(P). We say that reversesS whenx > y in L, for every
(x,y) € S. Finally, if R is a family of linear extensions a? andS c inc(P), we
say R reversess if each pair ofS is reversed by some in R.

Note that a familyR of linear extensions oP is a realizer ofP if and only
if for every (x, y) € inc(P), there existd. € R sothatx > yin L,i.e.,,Risa
realizer of P if and only if it reverses the set of all incomparable pairs. For this
reason, it is convenient to have a test which determines whether there is a linear
extension reversing a given subset inc(P).

For an integek > 2, a subseS = {(x;,y;) : 1 < i < k} C inc(P) is called
an alternating cyclewhenx; < y;,1in P, foralli = 1,2, ... k. In this last
definition, the subscripts are interpreted cyclically, iyg;; = y1. An alternating
cycleS = {(x;,y;) : 1 <i <k}isstrictif x; < y;in Pifandonly if j =i + 1,
foralli,j = 1,2, ..., k. When an alternating cycle is strict, the following three
statements hold:

(1) The elements ifixq, x5, ..., x;} form ak-element antichain.
(2) The elements ify4, v, ..., yi} form ak-element antichain.
(3) If i, j € [k] andx; is comparable ty;, thenj =i 4 1.

In Figure 1, we show an alternating cycle of length 4 while Figure 2 illustrates a
strict alternating cycle of length 3. The following elementary result is due to Trotter
and Moore [8]. See [4] for a short proof and a number of applications.

THEOREM 2.3. LetP = (X, P) be a poset and lef C inc(P). Then the follow-
ing statements are equivalent.

Figure 1. An alternating cycle of length 4.
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Figure 2. A strict alternating cycle of length 3.

(1) There exists a linear extensidnof P which reverses.
(2) S does not contain an alternating cycle.
(3) S does not contain a strict alternating cycle.

3. Graphs, Hypergraphs and Critical Pairs

Evidently, a poset has dimension 1 if and only if it is a linear order, so it makes
sense to restrict our attention to posets which are not linear ordeB.+¢€iX, P)

be any such poset. Then we associate WAth hypergraphHp, called thehy-
pergraph of incomparable pairglefined as follows. The vertices bfp are the
incomparable pairs in the pogetThe edges dfip are those set$ of incomparable
pairs satisfying:

(1) No linear extension oP reverses all incomparable pairsSn
(2) If T is a proper subset ¢f, then there is a linear extension Bfwhich reverses
all incomparable pairs iff.

Note that the edges of the hypergragh correspond to strict alternating cycles.
Then letGp denote the ordinary graph determined by all edges of sizé2iThe
following proposition is immediate.

PROPOSITION 3.1.Let P = (X, P) be a poset and ldtlp and Gp denote the
hypergraph and graph of incomparable pairs, respectively. Then

dim(P) = x(Hp) = x(Gp).

Call a pair(x, y) € inc(P) acritical pair if u < x in P impliesu < y in P and

v > yin P impliesv > x in P, for allu, v € X. Then let critP) denote the set of

all critical pairs. The following elementary proposition serves to explain why the
concept of a critical pair is important to the study of realizers.

PROPOSITION 3.2.Let R be a family of linear extensions of a partial ordBron
a ground setX. ThengR is a realizer ofP if and only if for every(x, y) e crit(P),
there exists some € R so thatx > yin L.

In other words, a familyr of linear extensions is a realizer if and only if it reverses
the set of critical pairs, and the dimension PBfis just the minimum size of a
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family of linear extensions reversing all critical pairs. Accordingly, it makes sense
to define thehypergraph of critical pairsH§ as the subhypergraph bffs induced

by the critical pairs. Similarly, we define ttgraph of critical pairs G§ as the
subgraph of5p induced by the critical pairs. The following lemma follows easily
from Proposition 3.2.

LEMMA 3.3. For every poseP = (X, P),
dim(P) = x(Hp) = x(H{) = x(Gp) = x(Gp).

For those readers who are not familiar with posets and dimension, we present
four examples to illustrate the properties of the graphs and hypergraphs we have
introduced in this section.

For an integem > 3, let S, denote the poset of height two withminimal
elementszy, as, . .., a,, n maximal element$q, by, ..., b, and orderings; < b;
if and only if i # j. We callS, the standard examplef ann-dimensional poset.
The diagram fofSs is shown in Figure 3.

EXAMPLE 3.4. The hypergraph of critical pairs of the standard exargples
just an ordinary graph, namely the complete graph eertices.

EXAMPLE 3.5. In Figure 4, we show a 3-dimensional poset called the “chevron.”
For this poset, the hypergraph of critical pairs is again an ordinary graph —a cycle
on 5 vertices.

EXAMPLE 3.6. A poset known as the “spider” is shown in Figure 5. The hyper-
graph of critical pairs contains two edges of size 3. However, the graph of critical
pairs for the spider is an odd cycle on 9 vertices.

4. The Role of the Hypergraph Edges

In this section, we present an example which serves to illustrate the essential role
of the hypergraph edges (those of size at least 3) in determining the dimension of
a poset.

EXAMPLE 4.1. For each integer > 2, we construct a pos&, for which the
chromatic number of the graph of incomparable pairs is at nrost& However,
the dimension oP will be at least(3/2)' 1.

Figure 3. The standard exampk8;.
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Figure 4. The chevron and its hypergraph of critical pairs.
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Figure 5. The spider, a 3-dimensional poset.

We proceed by induction on Fors = 2, we takeP, as the height 2 poset having
three minimal elements;, x, andxs; three maximal elements, y, and ys; with
comparabilitiest; < y», x, < yz andxz < y1.

P, has 6 critical pairs. Set

W2 = {(x1, y1), (x2, ¥2), (x3, y3)} and W3 = {(x1, y3), (x2, y1), (x3, y2)}.
Then

(D crit(Py) = Wo U W,
(2) W, andW, are independent in the graph of critical pairs, and
(3) W, andW; are strict alternating cycles in the hypergraph of critical pairs.

As a consequence, the chromatic number of the graph of critical paies 32—4,
as required. Now the dimension B% is also 2. Also note that all critical pairs
are min-max pairs. However, to set up the induction, we observe that th&,set
contains 3= 3%~ critical pairs and that no linear extension®fcan reverse more
than 2= 22~ of them.

Now suppose that we have construcgdor somer > 2. For inductive pur-
poses, we suppose that

(1) All critical pairs of P, are min-max pairs;

(2) The chromatic number of the graph of critical pairdpis at most 8 — 4;

(3) P, contains a seW, of critical pairs, with|W,| = 3’1, and no linear extension
reverses more thari-2 of the pairs inW,.

Note that by virtue of the third of these properties, we know that the dimension of
P, is at least(3/2)' 1.

We then construcP, ., by starting with three disjoint copie®;, Q, and Qs
each isomorphic t®,. Then add comparabilities to make each minimal element of
Q; less than each maximal element@f,, (cyclically). It is easy to see that the
critical pairs inP,, are all min-max pairs, so that property (1) holds.

We next show that the graph of critical pairsRf,; has chromatic number at
most 3¢ + 1) — 4. To accomplish this, color all critical pairs in ea®h, using the
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colors 12, ..., 3r — 4, using a good coloring d?, as a model. This is allowable
since no critical pair irQ; is adjacent to a critical pair iQ; wheni # j. Then
color all critical pairs of the fornix, y) wherex is a minimal element iQ;,; and

y is maximal inQ; with color ¥ — 4 +i fori = 1, 2, 3. This shows that property
(2) holds.

Next, letW, 1 be the union of the critical pairs in the three copies$iofso that
[W,41) = 3-3~1 = 3 as required. Then note that no linear extensioPof;
reverses critical pairs in all three copiesRf so that no linear extension &%, ,
reverses more than-2'~1 = 2' pairs fromW,, 1. Thus property (3) holds, and we
have verified that the construction works as claimed.

5. Proof of Theorem 1

Let P = (X, P) be a poset which is not a linear order. If di®) = 2, then it
follows trivially that the chromatic number of both grapBs andG§ is 2.

Now suppose thak (Gp) = x(Gg) = 2. We show that diP) = 2. We
argue by contradiction. Suppose this statement is false. Of all counterexamples,
choose one for which the cardinality &f is minimum. Then it follows thaP is
3-irreducible. In turn, this implies th&tis indecomposable.

Now let¢ be any proper 2-coloring of the graf@p of incomparable pairs d®,
say using the colors ifl, 2}. For each = 1, 2, letS; denote the set of critical pairs
which are assigned colarby ¢. Since dim{P) = 3, one ofS; and S, contains a
strict alternating cycle. Of all strict alternating cycles contained in one of the color
classes, consider those of minimum length and let this minimum length ber
each strict alternating cycle = {(x;, ;) : 1 < i < k} contained in a color class,
let £(S) count the number of points in

k

U{M DX < u < Yy}
i=1

We then choose a strict alternating cyélef lengthk contained in a single color
class for whichf (S) is as large as possible. Without loss of generality, we may
assume thaf is contained in color class 1.

CLAIM 1. The lengthk of the alternating cycle is 3.

Proof. First note thak > 3, for if k = 2, then the vertices iff are adjacent in
bothGp andHp. Now suppose that > 4. It follows that foreach = 1, 2, ...  k,
x; isincomparable with botk; _; andy; ,». So we may choose critical paifs;, v;)
and (w;, z;) with u; < x;, w; < x;, yi_1 < v; andy;,» < z;. For eachi =

1,2, ..., k, note thattw;, z;) is adjacent tdx; .1, y;11) SO eachw;, z;) is assigned
color 2.
We claim that for eachi = 1,2,...,k, the critical pair(u;, v;) is assigned

color 2. For suppose that sone, v;) is assigned color 1. Thefu;, v;)} U {(x;,
yvj) 11 <j <k, j#ii— 1} forms an alternating cycle of length— 1. Any
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minimal length alternating cycle among thésel pairs is strict, thus contradicting
the choice ok. So we conclude that each péit;, v;) is assigned color 2.

Then observe that for eaéh= 1,2, ..., k, u;y1 < z;, w; < z;_1 andw;_1 <
viy1. It follows that {(u; 1, viy11), (wi, z;), (w;_1, z;—1)} iS an alternating cycle of
length 3 and all three pairs are assigned color 2. This slkows, as claimed.O

CLAIM 2. For eachi = 1, 2, 3,the incomparable paifx;, y;_1) is a critical pair.
Proof. S = {(u;, v;) : 1 < i < 3}is astrict alternating cycle angi(S") > f(S).
Furthermore,f(S") > f(S) unlessu; = x; andy;_, = v; fori =1, 2, 3. a

Now consider the subpos@tinduced by the points in the strict alternating cy€le
We observe tha@) is a disjoint sum of three connected subpo$gisQ, andQsz,
each of height at most 2. Furthermore, we may label these three subposets so that:

(1) For eachi = 1, 2,3, if a is minimal inQ; andb is maximal inQ; 1, then
(a, b) is a critical pair assigned color 1 lpy

(2) For eachi = 1,2, 3, if a is minimal inQ; andb is maximal inQ;_;, then
(a, b) is a critical pair assigned color 2 lpy

Now let Qg be the largest subposet Bfconsisting of three non-empty connected
component®),, Q», Qz, each of height at most 2, satisfying conditions (1) and (2)
as given above. Then I&tconsist of all points in the ground sEtwhich are not in
the subposeR,. SinceP is indecomposable, we know th@p is a proper subposet
of P, i.e.,Y # 0. Furthermore, there exists some paint Y which is comparable

to some but not all points d@,.

CLAIM 3. Any point inY which is less than some minimal point@y is less than
all points of Qq. Dually, any point inY which is greater than any maximal point in
Qo is greater than all points of),.

Proof. Suppose thay € Y and thaty is less than some minimal point fo.
Without loss of generality, we may assume thak a; for some minimal point
ay of the connected subpos@ of Qq. We show thaty < a, for every minimal
elementa, of Q,. Suppose to the contrary that there is some minimal element
of Q, for which y||a,.

Let b3 be any maximal point irQs. Then we know thata,, b3) is a critical
pair assigned color 1 by. Also, since(ay, b3) is critical andy < a1, we now that
y < bs.

Now choose a maximal poing in Q; with a; < b;. Then we know thata,, b1)
is critical and is assigned color 2 y It follows that the incomparable paiy, a,)
is adjacent to bothia,, b3) and(az, b1) in Gp, i.e., (y, ap) is adjacent to vertices
in each of the two color classes, which is impossible. The contradiction completes
the proof of the assertion thatis less than every minimal point iQ,. But this
argument is cyclic, so we may conclude thas less than all minimal elements in
all three components. In turn, it follows thatis less than all elements @ as
claimed. O
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We are now ready to complete the proof of our theorem. Choose a paint
which is comparable with some but not all pointsQg. Without loss of generality,
we may assume that

(1) y is incomparable with all minimal points @Jo.
(2) There is a maximal poirit; in Q; so thaty < b;.
(3) Any point less thary is comparable with all points @,.

We will complete the proof by showing that the subpadQgtis not maximal. To
accomplish this, we show that

e y is incomparable with all points i, andQs.

e For each maximal poirti, in Q,, the incomparable paity, b,) is critical and
assigned color 1 by.

e For each maximal poiritz in Q,, the incomparable paity, b3) is critical and
assigned color 2 by.

Suppose first that is comparable with maximal points in all three components
of Qo. Then none of the maximal points comparableytoan also be a minimal
point. It follows thatP contains the 3-dimensional spider (see Figure 5) and thus
x(Gp) > 3. This is a contradiction.

Now suppose that is comparable with maximal points in exactly two of the
three components dq, sayQ; andQ,. Choose a maximal poirit, in Q, with
y < by. Then letaz be any minimal element @s;. It follows that the incomparable
pair (y, a3) is adjacent to botlias, 1) and(as, b,) in Gp, but¢ assigns different
colors to these two critical pairs. The contradiction shows thatomparable only
with points fromQ; and incomparable with all points iQ, andQs.

We next show that for each maximal poibt in Q,, the incomparable pair
(y, by) is critical and assigned color 1 ky. Letu’ < y. Thenu' is less than all
points of Qg by property (3) above. In particular, this show's< b,. On the other
hand, leth > b,. Then by Claim 3, we know thdt is greater than all points of
Qo. Thusbh > by > y andb > y. Thus(y, by) is critical. Now leta, be any
minimal element of), with a, < b,. Then(ay, b,) is critical and assigned color 2
by ¢. Since(ay, b1) and(y, b,) are adjacent, we conclude thaassigns color 1 to
()’» b2) .

The argument to show that for each maximal péinbf Qs, the incomparable
pair (v, b3) is critical and assigned color 2 by is dual. We conclude that we
can addy to Q; which contradicts the assumption that the cardinalityQgfis
maximum. With this remark, the proof of Theorem 1.1 is complete.

6. Some Open Problems

Originally, we thought that with just a little attention to detail, we could modify
the construction presented in Section 4 to settle Question 1.2 in the negative. After
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spending some time on this effort, we feel that it may take a new idea. We still
think it would be quite surprising should this question have an affirmative answer.

Among the several interesting open problems relating graph coloring and po-
sets, we want to mention one very interesting problem involving planar graphs
and a combinatorial connection discussed briefly in Section 1. With a grapgh
(V, E), we associate a posfis, called theadjacency posedf G, and defined
as follows.Ag is a height 2 poset contain an incomparable min-max @ajrc”)
for every vertexx € V. For each edge = {x, y}, the posefAg contains the order
relationsxy’ < y” andy’ < x”. Itis straightforward to verify thag (G) < dim(Ag).

The dimension of the incidence poset of a graph can be bounded from above
by a function of the chromatic number of the graph. However, this is not true for
adjacency posets. For example, the adjacency poset of a bipartite graph can have
arbitrarily large dimension —consider the cover graphs of standard examples. Also,
since there exist graphs with large girth and large chromatic number, taking the
adjacency poset, we see that there exist posets with large dimension for which the
comparability graph has large girth.

Here is one interesting class of graphs for which the dimension of adjacency
posets is bounded. The proof of the following theorem is given in [2].

THEOREM 6.1. If Ag is the adjacency poset of a planar graph, thdim(Ag)
< 10.

From below, we can show that there exists a planar poset whose adjacency poset
has dimension 5. Perhaps this is the right upper bound for Theorem 6.1.
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