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Abstract. We study visibility representations of graphs, which are constructed by 
mapping vertices to horizontal segments, and edges to vertical segments that intersect 
only adjacent vertex-segments. Every graph that admits this representation must be 
planar. We consider three types of visibility representations, and we give complete 
characterizations of the classes of graphs that admit them. Furthermore, we present 
linear time algorithms for testing the existence of  and constructing visibility rep- 
resentations of planar graphs. Many applications of our results can be found in 
VLSI layout. 

1. Introduction 

Several  l ayou t  compac t i on  strategies for VLSI are based  on  the concept  o f  visibility 
between para l le l  segments  [12] where  we say that  two para l le l  segments  o f  a 
given set are  visible i f  they  can be j o ined  by  a segment  o r thogona l  to them,  which 
does  not  intersect  any  o ther  segment.  In  this paper ,  we s tudy visibility representa- 
tions of  graphs ,  which  are const ructed  by  mapp ing  vertices to hor izonta l  segments,  
and  edges to vert ical  segments  d rawn be tween  visible ver tex-segments .  It is easy 
to see tha t  a g raph  tha t  admi ts  such a represen ta t ion  must  be  p lanar .  
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Various visibility representations have been considered in the literature, where 
vertices are represented either by horizontal intervals or by horizontal segments. 
An interval may or may not contain one or both of its endpoints. Otten and van 
Wijk [10] gave an algorithm for constructing a representation of a 2-connected 
planar graph such that vertices are represented by horizontal segments and edges 
by vertical segments having only points in common with the pair of horizontal 
segments corresponding to the vertices they connect (Fig. 1 (b)). In the following, 
this representation will be referred to as weak-visibility representation (w-visibility 
representation). The algorithm of Otten and van Wijk can be implemented to run 
in linear time, though they give no time bound. Duchet et a£ [2] independently 
proved that every planar graph admits a w-visibility representation. 

Melnikov [9] suggested the problem of characterizing the graphs whose vertices 
can be represented by horizontal intervals in the plane such that two vertices are 
adjacent if and only if their associated intervals are visible (Fig. l(c)). From the 
result of Duchet et al., it follows that every maximal planar graph admits a 
representation of the latter type, which will be called e-visibility representation. 
Thomassen [16] extended this by showing that all 3-connected planar graphs 
admit an e-visibility representation. Note that the e-visibility representation 
differs from the w-visibility representation because: (a) vertices are represented 
by intervals and not only by segments, and (b) visible vertex-intervals always 
correspond to adjacent vertices. 

Another problem that naturallly arises in this context is the following: charac- 
terize the class of graphs whose vertices can be represented by horizontal segments 
such that two vertices are adjacent if and only if their corresponding segments 
are visible (see Fig. l(d)). Such a representation will be called strong.visibility 
representation (s.visibility representation) and it differs from the w-visibility 
representation because it requires that visible vertex-segments correspond to 
adjacent vertices. It also differs from the e-visibility representation because the 
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Fig. 1. The three visibility representations: (a) a cycle of length 4; (b) w-visibility representation; 
(c) e-visibility representation; (d) s-visibility representation. 
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vertices are always represented by segments. Luccio et al. [8] gave a partial 
solution to the above problem by requiring that the endpoints of all the horizontal 
segments have distinct x-coordinates. Namely, they defined a new family of 
graphs, called ipo-triangular graphs (graphs that can be transformed into planar 
multigraphs with all triangular internal faces, by successive duplications of 
existing edges), and proved that a graph admits an s-visibility representation with 
the above restriction if and only if it is ipo-triangular. Notice that the restriction 
on the x-coordinates of  vertex-segments is essential to their characterization. 
Consider for example any cycle of length greater than three (see Fig. 1). 

The main contributions of this paper are: 

(1) We unify and extend the results of Otten and van Wijk and of Duchet et 
al. on the w-visibility representation. First, we propose a linear time 
algorithm for constructing a w-visibility representation for a 2-connected 
planar graph. This algorithm is a variant of the Otten-van Wijk algorithm. 1 
Next, we extend our algorithm such that it constructs a w-visibility rep- 
resentation of any planar graph without increasing the time complexity. 

(2) We present a complete solution of  Melnikov's problem by showing that 
a graph admits an e-visibility representation if and only if it is planar and 
there is a planar embedding for it such that all outpoints appear on the 
boundary of the same face. We also give two linear time algorithms, one 
for testing the above condition, and the other for constructing an e-visibility 
representation. 

(3) Finally, we give a complete characterization of the class of  graphs that 
admit an s-visibility representation, and we show how to construct one 
efficiently in the case of maximal planar graphs and 4-connected planar 
graphs. 

Another application of  our results in the field of VLSI layout is to the problem 
of minimal-node-cost planar embedding. This problem has been considered by 
Storer [13] and consists of  finding an embedding of  a graph in the rectilinear 
grid where the total number of bends along edges is minimum. The technique 
described in this paper can be used as the core of a linear time heuristic algorithm 
[ 15] for this problem which yields better performance guarantees than the heuris- 
tics given by Storer. 

The rest of  this paper is organized as follows. Section 2 contains complete 
definitions of  the above visibility representations, and basic properties of  them. 
Section 3 is concerned with the w-visibility representation. In Section 4, we 
present the results on the e-visibility representation. Section 5 deals with the 
s-visibility representation. Finally, in Section 6 we present a summary of our 
results and discuss open problems for further research on the subject. 

i After the submission of this paper, we became aware that Rosenstiehl and Tarjan [ 11] indepen- 
dently proposed another variant of the Otten-van Wijk algorithm and considered the "interlocking" 
layout of the dual graph. 
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2. Preliminaries and Definitions 

The basic graph theoretic definitions can be found in many textbooks [1], [3]. 
Here, we recall some terminology on connectivity properties of graphs. A cut-point 
of a graph is a vertex whose removal disconnects the graph. A separation pair is 
a pair of  vertices whose removal disconnects the graph. A graph is said to be 
k.connected if  it,cannot be disconnected by the removal of  less than k vertices. 
Clearly, if a graph is k-connected, then it is also/-connected for all l < k: A block 
of a graph G is a maximal 2-connected subgraph of G. The block-cutpoint tree 
of  G is a tree whose vertices are the cutpoints and the blocks of  G, and whose 
edges connect each cutpoint to the blocks that contain it. 

Let S be a set of horizontal nonoverlapping segments in the plane. Two 
segments s, s' of  S are said to be visible if they can be joined by a vertical segment 
not intersecting any other segment of S. Furthermore, s and s' are called e-visible 
if they can be joined by a vertical band of  nonzero width that does not intersect 
any other segment of  S. This is equivalent to saying that s and s' can be joined 
by two distinct vertical segments not intersecting any other segment of S. 

Definition 1. A w.visibility representation for a graph G = ( V, E)  is a mapping 
of  vertices of  G into nonoverlapping horizontal segments (called vertex-segments) 
and of  edges of  G into vertical segments (called edge-segments) such that, for 
each edge (u, v)~ E, the associated edge-segment has its endpoints on the 
vertex-segments corresponding to u and v, and it does not cross any other 
vertex-segment. 

In order to study the visibility representations in a unified way, we give a 
definition of  e-visibility representations using segments instead of  intervals. 

Definition 2. An e.visibility representation for a graph G is a w-visibility rep- 
resentation with the additional property that two vertex-segments are e-visible 
if and only if the corresponding vertices of  G are adjacent. 

Now, we show that our definition is equivalent to the one of Melnikov with 
respect to the class of graphs that admit an e-visibility representation. First, from 
a Melnikov e-visibility representation of  a graph G, we can obtain an e-visibility 
representation of  G by closing all the intervals. Similarly, from an e-visibility 
representation, we can derive a Melnikov e-visibility representation by transform- 
ing each segment into an interval, removing its right endpoint. 

DefinRion 3. An s-visibility representation for a graph G is a w-visibility rep- 
resentation with additional property that two vertex-segments are visible if and 
only if the corresponding vertices of  G are adjacent. 

If  a graph admits any of  the three aforementioned visibility representations, 
then it is planar, since a planar embedding of  it can be immediately obtained 
from the visibility representation by shrinking each vertex-segment into a point. 
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A face of  a visibility representation F is a maximal region of the plane such that, 
for every two points x and y in it, there is a Jordan curve from x to y which 
does not intersect any segment of F. Let Cw, C~, and Cs be the classes of  graphs 
which admit a w-visibility representation, e-visibility representation, and s-visi- 
bility representation, respectively. Clearly, if G ¢  Cw, then G is a spanning 
subgraph of  some graph H ~ Cs, and furthermore H is a spanning subgraph of  
another graph N E Cs. As we will see in the following, the three classes of  graphs 
defined above are hierarchically related, i.e.: C~ is properly included in C~, and 
C~ is properly included in Cw. 

In the remaining part of  this section, we present some preliminary results that 
will be used later. A PERT-digraph D = ( V, A) is an acyclic digraph with exactly 
one source, s, and one sink, t. We usually associate a positive length with each 
arc of  D. A well-known problem on PERT-digraphs is the following: for each 
vertex v of  D, find the length of  the longest path from s to v. This quantity will 
be denoted by a(v). The critical path method solves this problem in O(IA]) 
time [3]. 

An st-numbering for a graph G = ( V, E),  where s and t are two distinct vertices 
of G, is a one-to-one mapping ~: V--> { 1, 2 , . . . ,  I V I}, such that £(s) = 1, ~:(t) = [ V I, 
and each vertex v # s, t has two adjacent vertices u, w for which ~ (u )<  ~:(v)< 
~(w). Given an st-numbering ~ for a graph G= (V, E), we construct a digraph 
D = ( V, A) by orienting every edge from the lowest numbered vertex to the highest 
one. Namely, [u, v] ~ A if and only if (u, v) ~ E and ~(u) < ~(v). The digraph D, 
which is induced by ~, is clearly acyclic and has exactly one source, s, and one 
sink, t, i.e., it is a PERT-digraph. Conversely, any topological sorting of  the 
vertices of  a PERT-digraph is an st-numbering for the underlying undirected 
graph. 

Lempel et al. [7] showed that for every 2-connected graph and every edge 
(s, t), there exists an st-numbering. A linear time algorithm for finding it has 
been presented by Even and Tarjan [4]. 

Fact 1. Every directed path of  D visits vertices in increasing order. 

Proof. Otherwise, there would be an arc [w, v] with ~(v) < ~(w), which contra- 
dicts the definition of  D. []  

Fact 2. For every vertex v of D there exists a simple directed path P from s to 
t containing v. 

Proof. Let P be any maximal path containing v. Let u and w be the first and 
last vertices of P, respectively. Then u is a source, and w is a sink. Hence, we 
have u = s and w = t. []  

Let D be a 2-connected planar digraph, induced by some st-numbering, and 
/ )  any planar embedding of  D. For any vertex v of  D we define deg+(v) and 
deg-(v) to be the number of  arcs outgoing from v and incoming to v, respectively. 
Furthermore, we denote with l ( f )  and h ( f )  the lowest and highest numbered 
vertices on the boundary of  a face f of D. 
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Lemma 1. Each face f o fD  consists of two directed paths from l ( f )  to h( f) .  

Proof. Let f be a face o f / ~  for which the lemma is not true. Then there exists 
an arc [w, u] on the boundary of f directed from h( f )  to l( f) .  From Fact 2, 
there are directed paths P1 from u to t and P2 from s to w (Fig. 2). From Facts 
1 and 2, and the planarity of  D, these two paths must intersect at a common 
vertex x. But then D (D)  has a cycle which consists of  the arc [ w, u], the subpath 
of P1 from u to x, and the subpath of P2 from x to w. This contradicts the 
acyclicity of  D. [] 

A 

Lemma 2. All outgoing (ingoing) arcs of any vertex v of D appear consecutively 
around v. 

Proof The lemma holds trivially for the vertices s and t. Let v be any other 
vertex, and suppose, for a contradiction, that there are arcs Iv, Wo], [ wl, v], [ v, w2], 
and [w3, v], appearing in clockwise order around v (Fig. 3). From Fact 2, there 
are directed paths Po and P2 from w0 and w2 to t, respectively. Similarly, there 
are directed paths P1 and P2 from s to wl and w3, respectively. But then one of 
P2 and Po must intersect either P1 or P3 at a common vertex x. This implies that 
D (D)  has a cycle, which contradicts the acyclicity of  D. [] 

Lemma 3. Every vertex v ~ V -  {s, t} is the lowest numbered vertex for deg+(v) - 1 
faces and the highest numbered vertex for deg-(v)  - 1 faces, s is the lowest numbered 
vertex for deg+(s) faces, and t is the highest numbered vertex for deg-(v)  faces. 

t 

P~ 

8 

Fig. 2. Directed paths in the proof of Lemma 1. 
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Fig. 3. Directed paths in the proof of Lemma 2. 

Proof. Since D is 2-connected, every vertex v is in the boundary of  deg(v) 
distinct faces. By Lemma 2, all incoming and outgoing arcs incident to v appear 
consecutively around v. Therefore, if v # s, t, there are d e g + ( v ) -  1 faces around 
v that contain two directed paths originating from v (Fig. 4).Hence, from Lemma 
1, v is the lowest numbered vertex for d e g + ( v ) - 1  faces. A similar argument 
applies to the outgoing arcs. The different result for s and t is due to the fact 
that all their incident arcs have the same orientation. [] 

3. Weak-Visibility Representation 

First, we describe a linear time algorithm for constructing a w-visibility representa- 
tion of  a 2-connected planar graph G = ( V, E).  Next, we extend this algorithm 
in order to construct a w-visibility representation of  any planar graph. 

For the sake of  simplicity, we will use the same notation for the vertex-segments 
of  the visibility representations and their corresponding vertices in the graph. 
The same will be done for the edge-segments and their corresponding edges. 

v 

Fig. 4. Faces around vertex v. 



328 R. Tamassia and I. G. Tollis 

Algorithm W-VISIBILITY 
Input: A 2-connected planar graph G = ( V, E). 
Output: A w-visibility representation for G such that each vertex- and edge- 
segment has endpoints with integer coordinates. 
1. Select an edge (s, t) ~ E. 
2. Compute an st-numbering for G. Let D be the directed graph induced by the 

st-numberinD 
3. Find a planar representation/~ of D such that the arc [s, t] is on the external 

face and the rest of  D lies on the right side of [s, t]. Use /~ to construct a 
new digraph D* as follows: 
3.1. Vertices of D* are the faces of/~.  
3.2. There is an arc [f, g] in D* if face f shares an arc a = [v, w], distinct 

from [s, t], with face g and a is positively oriented with respect to f, i.e., 
face f is on the left side of a, when a is traversed from the tail to the head. 

Note that D* is a 2-connected planar PERT-digraph, with source s* (the 
internal face containing arc Is, t]), and sink t* (the external face). I f  we ignore 
arc directions, we observe that D* is the dual graph o f / ~  without the dual 
edge of  (s, t). 

4. Apply the critical path method to D* with all arc-lengths equal to 2. This 
gives the function a ( f )  for each vertex f of D*. 

5. Construct the w-visibility representation as follows: 
5.1. Use the st-numbering computed in step 2 to assign y-coordinates to 

horizontal vertex-segments. 
5.2. Set the x-coordinate of arc [s, t] equal to - 1. 
5.3. For any other arc a of  D, set the x-coordinate of the corresponding 

vertical edge-segment equal to an integer j, with a ( f ) < j  < a(g), where 
f and g are the faces of D sharing a in their contour. 

5.4. Set the y-coordinates of the endpoints of each edge-segment equal to the 
ones of the connected vertex-segments. 

5.5. Set the x-coordinates of the left and right endpoint of each vertex-segment 
equal to the minimum and maximum x-coordinates of  their incident arcs, 
respectively. I f a  vertex-segment v is incident to exactly two edge-segments 
with the same x-coordinate, xv, then set the x-coordinates of the endpoints 
of v to xv - 1 and xo, respectively. 

An example of the construction performed by the algorithm W-VISIBILITY 
is given in Fig. 5. Figure 5(a) shows a planar embedding D along with the 
corresponding D*. Vertices o f / ~  and D* are represented by white and black 
circles, respectively. The white vertices are numbered according to the st- 
numbering. For each black vertex f~ the value of a(f~) is shown in parentheses. 
Figure 5(b) illustrates the w-visibility representation produced by the algorithm. 
We will use the following lemma to prove the correctness of  the algorithm. 

Lemma 4. For any two vertices f and g of  D*, either there is a directed path of 
D* between them, or there is a directed path of D from min{h(f) ,  h(g)} to 
max{/(f) , / (g)}.  
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Fig. 5. Running example for algorithm W.VISIBILIT'L (a) Directed graphs /~ and D* derived 
from a graph G; (b) w-visibility representation for G. 
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Proof. Assume without loss of generality that h(f) < l(g). A path from vertex 
v o f / ~  that always takes the leftmost outgoing arc (i.e., the first outgoing arc in 
the clockwise order around the vertex) will be called a leftmost path from v. A 
rightmost ~ath is defined similarly. Let P~ and/ '2  be the leftmost and rightmost 
paths of D from h(f) to t. Similarly~ let P3 and P4 be the corresponding paths 
for l(g). If  there is a directed path of D from h(f) to l(g), we are done. Otherwise, 
either/ '2 crosses P3 (at a common vertex), or P~ crosses/'4. For simplicity, we 
will consider only the first case. Let x be the first vertex at which P2 and P3 
intersect (Fig. 6). Clearly, from Lemma 2, every arc incident to any vertex in 
path P: from the right side of P2 is incoming. The same happens for the arcs 
incident to/ '3 from the left. Because of the construction of D*, there is a directed 
path in D* from f to g. [] 

Theorem 1. The algorithm W-VISIBILITY correctly computes a w-visibility rep- 
resentation of G. 

Proof. Since each horizontal segment has a distinct y-coordinate, no two 
horizontal segments intersect. Because of  Lemma 1 and the assignment of y- 
coordinates to the horizontal segments, each face f of the w-visibility representa- 
tion is a horizontally convex rectilinear polygon, i.e., the intersection of every 
horizontal line with f is either empty or consists of only one segment (see Fig. 
5(b)). Furthermore, from steps 4 and 5, the vertical line with abscissa a(f )  
separates the two paths on the sides of f .  Hence, it is impossible for two distinct 
edges of a face f to overlap in the w-visibility representation. Finally, considering 
Lemma 4, we can conclude that no two faces of D intersect in the representation 
constructed by the algorithm, except for the common edges. Therefore, the 
algorithm computes a correct w-visibility representation of the graph G. [] 

t 

.J 
/ 
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Hg. 6. Directed paths in the proof of [~rnma 4. 
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We now discuss the time complexity of the algorithm W.VISIBILIT~. Step 1 
takes constant time. Using Even and Tarjan's algorithm [4] step 2 can he 
performed in time O([ Vt+IE[) .  By suitably modifying Hopcroft and Tarjan's 
planarity testing algorithm [6] step 3 take O(I Vt) time. The critical path method 
of step 4 has complexity O(I E [). Step 5 takes time O(I V t+ I E I). Because of the 
planarity of G, IEI = 0([ VI). We thus have: 

Theorem 2. The overall time complexity of algorithm W-VISIBILITY is 
o(I vl). [] 

Notice that a more compact w-visibility representation can be obtained by 
applying the critical path method also to the graph G and by using the value 
a(v) as the y-coordinate of the vertex-segment v, for each vertex v in V. This 
modification does not affect the asymptotic computing time. See also [11]. 

The algorithm W-VISIBILITY can be extended to work for a 1-connected 
graph as shown below. 

Algorithm W-VISIBILITY2 
Input: A planar graph G. 
Output: A w-visibility representation for G. 
1. Find the blocks B 1 , . . . ,  Bm of the graph G. Let T := {B~, . . . ,  Bin} and S := 0 .  
2. Construct a w-visibility representation for B1; 

T := T-{B1}; 
S := SU{B~}; 

3. while T # O do 
let Be , , . . . ,  B, k be all the blocks of T which have a cutpoint c in common 
with some blocks in S, i.e. (f"l~=l Be,)fq S={c}; 
find a w-visibility representation for each Be, using algorithm W-VISI- 
BILITY, where in step 1 c is chosen to be the source vertex s; 
scale down the above representations in such a way that they all fit on 
the top of the vertex-segment corresponding to c in the w-visibility 
representation already constructed for S; 

k 

T:= T -  U { B j ;  
i = l  

endwhile 

We can summarize the results of this section in the following theorem. 

Theorem 3. A graph admits a w-visibility representation if and only if it is planar. 
Furthermore, a w-visibility representation for a planar graph can be constructed in 
linear time. D 
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4. e-Visibility Representation 

In this section we present a complete characterization of  the class of  graphs that 
admit an e-visibility representation. Moreover, we give linear time algorithms 
for testing the existence of  and for constructing an e-visibility representation of 
a planar graph. The following lemma provides a necessary condition for the 
existence of  an e-visibility representation. 

Lemma 5. I f  the graph G admits an e-visibility representation, then there exists a 
planar embedding G of G such that all cutpoints appear on the boundary of the 
external face. 

Proof Let F be an e-visibility representation for G. Construct ¢~ by shrinking 
every vertex-segment of  F into a point, and bending the edge-segments in order 
to maintain the adjacencies (Fig. 7). Suppose, for a contradiction, that there is a 
cutpoint c that does not appear on the boundary of the external face. Then there 
are blocks B0, B 1 , . . . ,  Bm in G such that the embedding of B I , . . . ,  Bm in G lies 
entirely inside an internal face f of the embedding of  Bo, and every path from 

m 

a vertex of  any Bi, i = 1 , . . . ,  m, to the rest of  the graph G = G-[ ._J~!  Bi passes 
through c (Fig. 8). Let o- be a segment of  some B i, j # 0, such that or is distinct 
from c and is either the topmost or the bottommost segment of  all B~, i = I , . . . ,  m. 
Since face f is internal, segment o- is visible by some segment ~" of  G distinct 
from c. Hence, there is an edge (o-, ~-) connecting G and Bj, which contradicts 
the fact that c is a outpoint. [] 

The algorithm W-VISIBILITY described in the previous section can be ex- 
tended in order to construct an e-visibility representation for any 2-connected 
planar graph G (Fig. 9). 
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Fig. 7. (a) An 8-visibility representation. (b) A planar embedding constructed from the representation 
in (a). 
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Fig. 8. Arrangement of blocks in the proof of Lemma 5. 

Algorithm e-VISIBILITY 
Input: A 2-connected planar graph G. 
Output: An e-visibility representation for G such that each vertex- and edge- 
segment has endpoints with integer coordinates. 
1. Compute a w-visibility representation F for G using algorithm W- VISIBILITY. 
2. for each internal face f of F do begin 

2.1. let A and • be the sets of vertex segments on the left and right side of 
f, excluding l ( f )  and h(f) ,  respectively; 

2.2. for each A e A do 
extend A moving its right endpoint to the abscissa a ( f ) ;  

2.3. for each ~ e ~ do 
extend ~b moving its left endpoint to the abscissa a ( f ) ;  

end 

The correctness of the algorithm stems from the following considerations: 

(1) Each vertex-segment has a distinct y-coordinate. 
(2) For each internal face f, segments of A and • lie on the left and right 

side of the vertical line with abscissa a (f). 
(3) For each internal face f without the edge ( l(f) ,  h(f)) ,  vertices l ( f)  and 

h ( f )  are no longer e-visible inside f 

From Theorem 2, step 1 takes O(I VI) time. In step 2 each vertex-segment v 
is considered at most deg(v) times, once for every internal face in which it 
appears. Hence, step 2 has complexity O(~v~ v deg(v))= O(IE t)= o ( t v I ) .  From 
the above discussion we have: 

Theorem 4. Algorithm e- VISIBILITY correctly computes an e-visibility representa- 
tion of  a 2-connected planar graph G = (  V, E) in time O( I VI). [] 
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The e-visibility representation constructed from the w-visibility representation of Fig. 5(b). 

Since every 2-connected planar graph admits an e-visibility representation, 
one might question whether the necessary condition given in Lemma 5 for the 
existence of  this representation is also sufficient. The answer is affirmative. 

Lerama 6. Let G be a planar embedding of a separable graph G = (  V, E) such 
that every cutpoint of G appears on the external face of G. Then G admits an 
e-visibility representation that can be constructed in time 0(I  VI). 

Proof. Let B ,  i = 1 , . . . ,  k, be the blocks of G that have only one cutpoint c ,  
i = 1 , . . . ,  k, in common with the rest of G, i.e., the B~'s are the leaves of the 
block-cutpoint tree of G. Let v~ be a vertex of B~ distinct from c,  appearing on 
the external face of  G, i = 1 , . . . ,  k. We construct the graph G' from G by adding 
a new vertex x and connecting it to all the vertices v ,  i = 1 . . . . .  /~ G'  is 2-connected 
and planar. Hence, from Theorem 4, it admits an e-visibility representation. In 
particular, consider the one, F', produced by algorithm e-VISIBILITY when 
choosing vertex x as the topmost vertex-segment. By removing x from F', we 
obtain an e-visibility representation for G. The above transformation can clearly 
be performed in linear time. [] 

Note. For every boundary circuit C of  ¢~, there exists another planar embedding 
G, of the same graph G, which has the same boundary circuits, but C is external 
in ¢~. Therefore, Lemma 6 still holds if the cutpoints of G lie all in some internal 
face of  G. 
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Ca) 

Fig. I0. 

(b) 

Examples of planar graphs that do not admit an k-visibility representation. 

Figure 10 shows two examples of planar graphs that do not admit an e-visibility 
representation. Note that the graph in Fig. 10(a) is the planar graph with the 
minimum number of vertices that does not admit an e-visibility representation. 
From Lemma 5 and Lemma 6 we obtain a complete characterization of the class 
of graphs that admit an e-visibility representation. 

Theorem 5. 2 A graph G admits an e-visibility representation if and only if there 
is a planar embedding G for G such that all cutpoints of G appear on the boundary 
of the same face. [] 

The following equivalent characterization may be conveniently used in order 
to test in linear time whether a graph G admits an e-visibility representation. 

Corollary 1. Let G' be the graph obtained from G by adding a new vertex x and 
connecting it to all cutpoints of G. Then G admits an e-visibility representation if 
and only if G' is planar. [] 

5. Strong-Visibility Representation 

In this section we present necessary and sufficient conditions for the existence 
of an s-visibility representation. We also give efficient algorithms for the construc- 
tion of this representation in the case of maximal planar graphs and 4-connected 
planar graphs. 

From the results of  Section 3, one can immediately derive that: 

Theorem 6, Every maximal planar graph G = (V, E) admits an s-visibility rep- 
resentation that can be computed in time 0(I V[). [] 

2 This result has been independently discovered by the authors [14] and by Wismath [18]. 
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Furthermore, one could use an argument similar to the proof  of  Lemma 5 to 
prove the following result. 

L e m m a  7. I f  the graph G admits an s-visibility representation, then there exists a 
planar embedding G of  G such that all cutpoints appear on the boundary of  the 
external face. [] 

However, the above necessary condition is not always sufficient to guarantee 
the existence of  an s-visibility representation. In fact, there are 2-connected graphs 
that do not admit an s-visibility representation. Consider for example the graph 
K2.4 shown in Fig. 11. The reason for this is given in the next theorem. 

T h eorem  7. Let G be a 2.connected planar graph that has a separation pair of  
nonadjacent vertices v and w. I f  the removal of  v and w separates G in at least four 
components, then G does not admit an s-visibility representation. 

Proof. Let C1 . . . . .  Ck, k >-4, be the connected components of  G with respect 
to the separation pair v, w. Suppose, for a contradiction, that G admits an 
s-visibility representation F. We consider two cases for the vertex-segments v 
and w: 

Case 1. There is a vertical band/3 such that v and w lie on opposite sides of/3. 
Any component  Ci must have some vertex-segment that intersects a vertical 

line A inside band/3 (Fig. 12(a)). Hence, there must be at least k - 1 edge-segments 
between the Ci's, which is a contradiction. 

Case 2. Otherwise. 
Now let /3  be the vertical band of the plane consisting of the vertical lines 

crossing both v and w, and AI and A2 be the leftmost and rightmost lines, 
respectively. We define p~, i = 1, 2, as the ray of  A~ with origin an endpoint of  v 
and w, and not intersecting the other segment. Clearly, exactly one component 
occupies the part  of  13 that lies between v and w, because v and w must not be 
visible. Furthermore, any other component  must have a vertex-segment intersect- 
ing either one of  pl and P2 (Fig. 12(b)). Since there are at least four components, 
there are at least two components which have a vertex-segment intersecting the 
same ray. Therefore, there exist at least two visible vertex-segments which belong 

Example of a planar biconnected graph that does not admit an s-visibility representation. F~. 11. 
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Fig. 12. Connected components with respect to the separation pair v, w in the proof of  Theorem 7. 

to distinct components. In other words, there is at least one edge between two 
vertices of distinct components, which is again a contradiction. [] 

In the rest of this section we present a complete characterization of  the class 
of graphs that admit an s-visibility representation. Moreover, we show that all 
4-connected planar graphs admit an s-visibility representation which can be 
computed in O( I vl  3) time. 

Recall that each face of  an e-visibility representation consists of two chains 
of  vertex-segments and edge-segments between its topmost and bottommost 
vertex-segments. The s-visibility representation imposes further restrictions on 
the shape of the internal faces, i.e., for each internal face of an s-visibility 
representation, there is an edge-segment connecting the topmost and bottommost 
vertex-segments (see Fig. l(d)). 

Let D be the digraph induced by some st-numbering ~: on the 2-connected 
planar g raph  G. We say that ~: is a strong st-numbering if there is a planar 
embedding D of  D such that s and t appear on the boundary of the external 
face, and for every internal face f of  D, the vertices l ( f )  and h( f )  are joined by 
the arc [ l ( f ) ,  h(f)] .  

Theorem 8. A 2.connected graph G admits an s.visibility representation with 
bottommost vertex.segment s and topmost vertex-segment t i f  and only i f  there is a 
strong st.numbering for G. 

Proof. 

Only If. Let F be an s-visibility representation for G. We can assume without 
loss of generality that each vertex-segment of F has a distinct y-coordinate. From 
the previous discussion on the shape of faces in a s-visibility representation, it 
is easy to see that a strong st-numbering can be obtained by assigning numbers 
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from 1 to 1 V I to vertices, according to the vertical ordering of  the corresponding 
vertex-segments. 

If: Let ~: be a strong st-numbering for (3. If s and t are not adjacent, we add 
a new edge (s, t). For the resulting graph, s r is still a strong st-numbering. We 
then apply the algorithm e.VISIBILITY,  where we replace step 2.2. with step 
2.2' shown below, using the st-numbering ~ and the associated planar embedding 
/5. 

2.2'. for each A E A do i f f  contains the arc [ l ( f ) ,  h ( f ) ]  
then extend A moving its right endpoint to the abscissa a ( f )  
else extend A moving its right endpoint to the abscissa a ( f ) -  ½; 

Finally, if the edge (s, t), is not in G, we remove the corresponding edge- 
segment, and cut the vertex-segments s and t at the abscissa a(s*) = O. The result 
of this construction is an s-visibility representation for G. [] 

An st.extension of  G is a 2-connected planar graph G' obtained from G by 
adding two new vertices s and t, the edge (s, t) and edges connecting s and t to 
G. Combining Lemma 7 and Theorem 8 we have a complete characterization of 
the class of graphs that admit an s-visibility representation. 

Corollary 2. A graph G admits an s-visibility representation if  and only i f  there 
exists an st-extension G' of  G that admits a strong st-numbering. [] 

Now, we give some results that show a connection between Hamiltonian paths 
and s-visibility representations. 

Theorem 9. Let G be a 2-connected planar graph, and F a planar embedding of  
G. I f  there is a Hamiltonian path between two vertices s and t of  G that lie on the 
boundary of  the external face, then G admits an s.visibility representation. 

Proof Let P = (s = vl, v 2 , . . . ,  vn = t) be a Hamiltonian path between s and t. 
We claim that ~(vi) = i, for all i = 1 , . . . ,  n, is a strong st-numbering for G. 

Clearly, ~: is an st-numbering. Modify the embedding F so that P becomes a 
straight line and each internal face lies either on the left side or on the right side 
of P (Fig. 13). This can be done without modifying the face boundaries. Suppose, 
for a contradiction, that there exists an internal face f that does not contain the 
edge ( l ( f ) ,  h( f ) ) .  Then, by Lemma 1, there are two distinct paths from l ( f )  to 
h ( f )  that must have at least one vertex in common with the subpath of  P from 
l ( f )  to h( f ) .  Since these two paths must lie on the same side of  P, we obtain a 
contradiction with the planarity of G. Therefore, we conclude from Theorem 8 
that G admits an s-visibility representation. [] 

Corollary 3. Let G be a l-connected planar graph, and F a planar embedding of  
G. I f  there is a HamiItonian path between two vertices s and t o f  G that lie on the 
boundary o f  the external face, then G admits an s.visibility representation. 
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Fig. 13. Modification of the embedding F in the proof of Theorem 9. 

Proof We need only consider the case in which G is not 2-connected. Transform 
G into a 2-connected graph G' by adding the edge (s, t). From Theorem 9, G' 
admits an s-visibility representation. In particular, consider the representation 
obtained applying the construction of Theorem 8. Then we can remove from it 
the edge-segment corresponding to (s, t) and cut the vertex-segments correspond- 
ing to s and t as discussed in the proof of  Theorem 8. The result is an s-visibility 
representation for (3. [] 

Every 4-connected planar graph has a Hamiltonian cycle [17] which can be 
computed in time O([ Vt a) [5]. We thus have: 

Corollary 4. Every 4.connected planar graph G = (V, E)  admits an s-visibility 
representation which can be computed in time O([ V[3). [] 

6. Conclusions 

We have derived new results on visibility representations of  graphs, where vertices 
are represented by horizontal segments, and edges by vertical segments joining 
adjacent vertices. Specifically we have presented: 

(1) A linear time algorithm for constructing a w-visibility representation of  a 
planar graph. 
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(2) A complete characterization of the class ofgraphs that admits an e-visibility 
representation, and a linear time algorithm for deciding whether a given 
graph admits one. 

(3) A linear time algorithm for constructing e-visibility representations. 
(4) A complete characterization of the class of graphs that admits an s-visibility 

representation. 
(5) Efficient algorithms for constructing s-visibility representations for 

maximal planar graphs and 4-connected planar graphs. 

Although now all the three classes of graphs have been completely character- 
ized, there are still open problems on the s-visibility representation: 

(1) Is the necessary condition of Theorem 7 also sufficient for the existence 
of an s-visibility representation? 

(2) Is there an efficient algorithm for deciding whether a given graph admits 
an s-visibility representation? 

(3) Is there an efficient algorithm for constructing s-visibility representations 
in the general case? 
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