N,

= Information
?ﬁ% Processing
Letters

ELSEVIER Information Processing Letters 81 (2002) 297-304 —_—,
www.elsevier.com/locate/ipl

On an on-line scheduling problem for parallel jobs

Edwin Naroska, Uwe Schwiegelshohn
Computer Engineering Institute, University Dortmund, 44221 Dortmund, Germany

Received 26 July 2000; received in revised form 25 May 2001
Communicated by S. Albers

Abstract

This paper addresses the non-preemptive on-line scheduling of parallel jobs. In particular we assume that the release date
and the processing times of the jobs are unknown. It is already known that for this problem Garey and Graham’s list scheduling
algorithm achieves the competitive factor—Z,% for the makespan if: identical machines are available and if each job requires
only a single machine for processing. Here, we show that the same factor also holds in the case of parall2Dj@d£lsevier
Science B.V. All rights reserved.

Keywords: On-line algorithms; Analysis of algorithms; Scheduling

1. Introduction

We address a well known on-line problem: A job systeoonsisting of independent parallel jobs must be sched-
uled onm identical machines without preemption. Each joh t is characterized by its fixed (integer) degree of
parallelism 1< m; < m, its processing timg; > 0 and its release date > 0. Exactlym ; machines must be allo-
cated to a joly at its start and will be released altogether once the processing is finished. Each machine can execute
at most one job at a time and the execution of jalequires the same time on any subsekgfmachines. Further,

a job is not known before it is released and its processing time is unknown until the job has finished. We denote the
completion time of joby in a scheduleS by C;(S). Therefore, joly starts at timeC; (S) — p; in scheduleS. In this

paper it is the goal of a scheduling algorithm to minimize the makespag(S) = max;c. C;(S) of S. Further,

Chrax(7) is the minimal makespan of all valid schedulesmmachines for job system.

On-line problems are often evaluated with the help of the so called competitiveoradtlere, we say that an
on-line algorithm has a competitive ratioor is p-competitive if Cmax(S) < pCrrax(t) holds for any job system
and for any schedulg generated by this algorithm. Note that it may be a hard problem to find an optimal schedule
S" with Cmax(S") = Cihax(t) even if all information about is already available at time 0.

Variants of this problem have already been addressed in the past. Shmoys, Wein and Williamson [1] proved
a lower bound of 2- % for the competitive ratio using an example of Graham. This bound also holds for the
restricted cases where all jobs are sequentigl=€ 1 for all j €) or are immediately available (= 0 for all

* Corresponding author.
E-mail addresses; edwin@ds.e-technik.uni-dortmund.de (E. Naroska), uwe@ds.e-technik.uni-dortmund.de (U. Schwiegelshohn).

0020-0190/02/$ — see front mattér 2002 Elsevier Science B.V. All rights reserved.
PIl: S0020-0190(01)00241-1

298 E. Naroska, U. Schwiegelshohn / Information Processing Letters 81 (2002) 297-304

Jj € 7). Feldmann, Sgall and Teng [2] assumgd= O for all jobs and proved that the on-line version of Garey and
Graham’s list scheduling algorithm [3] is—2n—11 competitive, see Lemma 3. For the sake of completeness we repeat
this algorithm that has been presented first by Graham in 1966 [4]:

Algorithm List Scheduling
repeat
for any unscheduled and released jotio
if at leastn ; machines are idle
startj immediately onn ; idle machines
until all jobs int are scheduled

For the rest of the paper we say that a scheduldig acheduleif it is produced by AlgorithiList Scheduling.

Note that the algorithm does not require a specific processing order of the jobs and that another processing orde
may result in a different list schedule and makespan. Specifically, the job order need not be based on the releas
dates.

Further, Shmoys, Wein and Williamson [1] showed that introducing unknown release dates into the
scheduling model of Feldmann, Sgall and Teng will increase the competitive factor by at most a factor of 2. They
also state that a natural extension of the on-line version of Graham’s list scheduling [5] has a competitive factor of
at most 2— "—11 in the presence of unknown release dates and unknown processing times. However, Shmoys, Wein
and Williamson only discussed the sequential case=€ 1 for all j € 7).

As Garey and Graham's list scheduling algorithm yields an identical off-line performance guarantee for parallel
and sequential jobs it may seem reasonable to assume the same behavior in the on-line case as well. However, to ol
knowledge no better competitive factor than 3 has been proven so far in the parallel job case, see Feldmann et al. [6]

2. Basicresults

In this section we give a definition and some already known results that are later used to prove our main theorem.
We start by introducing a simple lower bound 16f ., (7).

— 1
Cc >C* = max R m— ‘min{p;, p; F—t)t.
max(?) = Cmax(T) 0<t<ma><ja{pj+rj}{ " : Z i P, P T }}
JET|pj+rj>t

To see the validity of this lower bound consider a jgband a timer with p; +r; > ¢ > r;. In any
valid schedule at least the workload; (p; + r; —t) of job j must be executed after time Also note that
Cﬁ'}ax(t) > maner{Pj + V]}

Next, we define non overlapping time intervals of the schedule. These intervals arepbabies!

Definition 1. A phaseP of scheduleS is a time intervalzp, tp + [p) such that inS at least one job from starts
or completes at times andzp + [p while no job fromz starts or completes at any other time of the interval.
If at mostL%mJ machines are used during a phdswe say thatP is thin.

Note that any machine is either busy or idle during a whole phase. Further, the time ifleGdx(S)) can be
uniquely partitioned into the phases$f
With the help of these phases we introduce a necessary and sufficient condition for list schedules:

Lemma 2. Assume aphase P = [tp,tp +1p) of aschedule S and ajob j e r such that C;(S) > tp +p and at
least m ; machinesareidleduring P. Iff S isalist schedule then for any such pair (P, j)

e either job j isexecuted during P,

e or itisnot released before the end of P.

E. Naroska, U. Schwiegelshohn / Information Processing Letters 81 (2002) 297-304 299

Proof. (=) In a list schedules a machine is only left idle at any time instant if there is no unscheduled job that
can be started at this time instant.

(«) Sort the jobs inr in increasing order by their starting date Sn Assume that Algorithnbist Scheduling
is using this order for the processing of jobs in its for-loop. Due to the ordering of the jobs and the conditions for
P andj Algorithm List Scheduling cannot start joly earlier than; is started in schedulg. On the other hand,
machines, that execute jgbin scheduleS, will not be left idle by AlgorithmList Scheduling (not considering a
possible permutation of idle and busy machines within one or several phases). Therefore, AlgistiStheduling
generates schedufe O

As already mentioned the next lemma is well known, see Feldmann, Sgall and Teng [2]. Here, we repeat the
lemma in a slightly different form and also give a version of its proof.

Lemma 3. Assume a job system t with »; = O for all jobs j € r. Then for any list schedule S there is
Cmax(8) < 2= ;) Crnax(T)-

Proof. If list scheduleS does not contain any thin phase, that is, if at Iq’#tn + 1)] machines are used at any
time instance ir§, we have
1 m 1
Cmax(S) 2 A 1

Coa®) > = Y mp; > Crmax(8) = =1 Crmax(5).
max m I 2m 2m—1 2—1

jet m

m+

Otherwise assume tha is the last thin phase of schedufewith mp > 0 machines being used durirg.
Further, let jobj execute during?. Because of Lemma 2 we know that
¢ all phases in the interva0d, C;(S) — p;) use atleasts —m; + 1> m —mp 4+ 1 machines,
e all phases in the intervalC; (S) — p;, C;(S)) use at leastzp > m; machines as all jobs executing durify
must also execute during all previous thin phases and
e for C;(S) < Cmax(S) all phases in the intervaC; (S), Cmax(S)) use at leasts — m p 4+ 1 machines a® is the
last thin phase and all jobs starting not before the end & havem j; >m —mp + 1.
Therefore, a total machine-time product of at leasgtp; + (m —mp 4+ 1)(Cmax(S) — p;j) < m?’,;ax(r) is required
for o. If p; > —CmadS _ this results in
S —
Cmax(S) < Cmax(S)
2-1 "2 1

m—mp+1

<pj < E*max(l')-

Otherwise asi2 p < m + 1 we have

—_ 1
Chax(T) = ;((’” —mp +1)Cmax(S) — (m — 2mp + 1) p;)

2 (momp 1 2L Cot
2— —— m
m—mp+1
= et) CoadS). D
T 2m—2mp+1 T T o 1maian

m

3. Main result
We now claim that the property of Lemma 3 holds as well in the presence of unknown release dates.

Theorem 4. Assume a job system . Then for any list schedule S thereis Cmax(S) < (2— %)f;ax(r).

300 E. Naroska, U. Schwiegelshohn / Information Processing Letters 81 (2002) 297-304

Proof. If the first release date in a job systemis r > 0 we simply subtract from the release dates and the
completion times of all jobs in any schedueFor the resulting job systemi and schedulé’ we obtain the ratio

Cmax(S/) _ Cmax(S) —r S Cmax(S) >1
Chax(™) Chax(T) —r Chia(®)

Therefore, it is sufficient to consider only those job systems where the first release date is always 0.

The theorem is proven in an inductive fashion. To this end, we assume that the theorem is valid for all job
systems with at most different release dates. Note that the initial ckse1 is addressed in Lemma 3. Next, we
consider a list schedulgfor an arbitrary job system with k + 1 release dates where 0 and 0 are the first two
different release dates.

If there is a jobj € 7 such that O< C;/(S) < r; for all jobs ;" € = with rj» < r; we obtain schedul§’ and
job systemz’ from S andt by simply removing all those jobg’ with r;; < r; from ¢ andS. This results in
Cmax(S") = Cmax(S) andC,,,(t)) = Ci,ax(t) With 7/ having at most different release dates and a positive first
release date. Therefore, we assume in the remaining parts of the proof that at least one machine is busy at any tim
instant in[0, Cmax(S)).

In the main part of the proof we are looking for a way to transform job systesrrg and list schedul& = S
into a new job system,, and a list schedul§, such that the following two conditions are satisfied:

7, has at most different release dates. (1)

Cmax(S) — Cmax(5n)
2-1 '
m

6;']a)((‘[) - 6>rkr|,:-,1)((‘[n) > r >

(2)
Due to our induction assumption we ha¥gax(S,) < (2 — %)f;‘;]ax(rn). This yields

1 1\— 1 1\=
Cmax(8) < Crmax(Sn) + (2— Z)” < (2— Z)Crnax(fn) + <2 — Z)” < <2 - Z>C>rknax(f)-
It remains to be shown that such a transformation froemd S into 7, andsS,, exists. In order to obtain schedule
S, we repeatedly remove time intervals from schedul&o this end we first define a basimoval operation: the
removal of a time intervals,, 1,) € P from scheduleS, with P being a phase i, generates a job systeth by
transforming every joh € = into a job j” and produces a new schedute This transformation has the following
properties:

_ _ | pj— @ —14) ifjob j executes during in S,
= pjr= P otherwise,

| maXrj — (1 —ta), ta} if rj>1t,in S, Co(sy — Ci(S)—(p—ta) FC;(S) =1,
= rj otherwise, (5= Cj($) otherwise.

If Sis a list schedule thef’ is a list schedule as well due to Lemma 2. For the sake of an easier notation we
allow jobs j" with p; =0 in job systemx’ if r;; = 0 holds. Note that those jobs do not affect the makespan of
schedules’.

We will use one or more removal operations within a Step generate schedulg and job system; from
scheduleS;_; and job systenm;_;. To express that a job € 7;_1 is transformed into jobj’ € 7; we use the
notationj’ = f;(j). As long as we apply only removal operations to transform job systémto job system;,
every job;’ € 7; is originally derived from a joly € . We denote this relation by= g(j’). Further, we define the
so called set of first jobg = {j € 7;|ry(jy = 0}, that is, the set of those jobs that are originally derived from jobs
with release date 0.

First, we want to satisfy condition (1). To this end we remove the time int¢éva) from S in Step 1 of the
transformation and obtain list schedileand job systemr. This step transforms every jobe t with r; > r into

E. Naroska, U. Schwiegelshohn / Information Processing Letters 81 (2002) 297-304 301

ajob ;' = fi(j) emwithry =r; —r andp; = p;. As 0 andr are the first two different release dates of job
systemr, job systemr; has onlyk different release dates.

In order to prove the validity of condition (2) we need to remove more intervals famhile it is easy to
see whether the inequalifye=l—malu) < holds it is rather difficult to address the inequalitjay(t) — r >

Crax(ta). Therefore in the latter case, we look for an equivalent formulation that is easier to handle. To this end
let us assume that there is a timi interval[r, Cmax(S)] such that the following properties hold for job system
and scheduls,:

For all jobsj € 7, there isp; < maX{pg(jy —r,t —r}. 3)
ijp]r—mr ijp] if t>r. 4)
]E'L' JET

> mjmin{p;,t —r;j}>mt forallzwith s <7—r provided: > r. (5)
JETIrj<t

Intuitively, property (3) guarantees that after the removal operations the processing time of each job with release
date 0 is either reduced lpyor is not more tham — r. As a removal operation cannot increase the processing time
or the release date of any job, the first transformation step (for all jabs, \ 7,) and property (3) (for all jobs
J € 7,,) together yield
max{0. re(j) + pgjy —t} > rj+pj = (t—71)
forall + >t and for each joly € 7, with r; + p; >t — r. This results in

Z m;min{p;,ri+py—t}= Z mjmin{p;,rj+pj— @ —r)} (6)
Jetlry+py 2t JETWIrj+pj=t—r
forall ¢ > 7. If f =r then inequality (6) already guarante(é*,.ﬁax(r) > Cliax(Tn)-

If £ > r then property (3) only addresses> r — r in the deflnltlon of the lower bound. Therefore, we
further need properties (4) and (5) to handle 7 — r. First note thaty ;.. m;p; = Zjern|,j<,mj min{p;,

t—rj}+ Zjernlr;+p;>t m;min{p;,r; + p; —t} holds for allz > 0. Then properties (4) and (5) yield

Croax(T) =7 > —Zm, py =1 Zm]p,

jlet jETn
= Yo mymin{pj.t—ri}+ > mymin{p;. p; +r,~—t})
JE|rj<t JE€twlrj+pj>t
1

> max {t'+— ‘min{p;,r; Y 7

0<t’<t_—r{ m 2 mimintp;. i+ pj }} "

j€mlrj+pjzt’
Therefore, inequalities (6) and (7) combined ylamax(r) E’,;]ax(tn). Hence, condition (2) becomes valid if

such & exists and if2 — 2)r > Cmax($) — Cmax(S») holds

As already mentioned suchzamay not exist for schedul§;. As Cmax(S) — Cmax(S1) = r we may remove
more time intervals with a combined length of up(fo— n—11)r from S1 such that a suitablecan be found. Before
describing those removal steps in detail we introduce another definition with respect to job systeththe
corresponding list schedul:

Definition 5. Ajob j € 7; is calleddominant or strongly dominant in schedules; if 2p; > C;(S;) or2p; > C;(S;)
holds, respectively; = max;cz 2y, >c;s){C;(Si) — p;} denotes the highest starting time of any dominant job in
schedules;.

302 E. Naroska, U. Schwiegelshohn / Information Processing Letters 81 (2002) 297-304

Note thatS; always contains a dominant job as we allow jobs with processing time 0 in this proof. Further, if
there is a jobj € % that starts before in schedules; we user” = MaX;ezc;(si)—p; < {C;j(Si) — pj} to describe
the highest starting time of any such job.

We briefly discuss the meaning of strongly dominant jobs in the context of our proof. If a B, is not
strongly dominant in schedul§, then the selection= p; + r guarantees the validity of property (5) asloes
not start before — r in scheduleS, and at leastz + 1 — m; machines must be busy at any time instance up to
the starting time ofj in §,,, see Lemma 2. Therefore, we can simply pick the job with the largest processing time
among those jobs for the selectionzofOf course property (3) is also correct for all those jobs. However, we still
need to make sure that property (3) holds for all strongly dominantjebs, .

As we further require > 1/ 4 r, we execute the following series of steps until subsequent condition is valid for
schedules;:

There is no strongly dominant jobe 7; in schedules; with p; > max/, pej) —r}. (8)

If condition (8) does not hold for schedul we pick the jobj; € 7; starting at timer/ in S; with the largest
processing time. We need to consider two cases:
1. If j; is strongly dominant we remove the time inter{#l 7/ 4 x) in Stepi + 1 to obtainz; ;1 andS; ;1. x is the
smallest value such that anyone of the following conditions holds:
e x =pj —1!, thatis, fi11(j,) is dominant but not strongly dominant in schedsile; .
. tl.t+1 > tl.t.
e Condition (8) is valid for schedul§; ;1.
This step resultsipj, — py._,(j,) = x. Note that!, , > ¢/ holds asf; ,1(j;) is always a dominantjob. If ., >/
then no strongly dominant job can start in the time inte(x{alti’H] in schedules; ;1 as otherwise the condition
1!, >t can be satisfied with a smaller valuexof
2. If j, is not strongly dominant, that is, if there is no strongly dominant job starting atrfieschedules;, then
thereis a timel.” in schedulesS; ast; must contain a strongly dominant job $. We pick any jobj, € 7; that
starts at timei” and remove the time intervaﬂg.”, tib + %x) and[t{, tl? + %x) to obtaint; ;1 andS; 1. Again,x
is the smallest value such that anyone of the following conditions holds:
e x=2pj, thatis,ps ¢, =0.
o x =2(t/ —t?), thatis, both removed intervals merge.
ot >t — %x.
e Condition (8) is valid for schedul§; ;1.
Again, fi+1(j;) is always a dominant job. Thereforg,, >t/ — %x. Ifel, >t — %x then no strongly dominant
job can start in the time intervai? < r/ — 3x, 1/, ;] in scheduleS; ;1 as otherwise the conditiafi, ,
can be satisfied with a smaller valuexof
Intuitively we can say that our target group consist those strongly dominant jobs that prevent the validity of
condition (8). Each job in the target group completes after tifrie schedules;. Let us discuss what happens to
this target group when a removal step is executed. First note that no strongly dominant job can start in schedule
S; after the beginning of any interval removed in Siep 1. Further, any time instance> tl.’+l in schedulesS; ;1
corresponds with a time instance in schedsijléhat comes after the end of any interval removed in $téfence,
if there is a strongly dominant joly = f;+1(j) € 7;+1 in scheduleS; 1 with C;(S;4+1) > tl?+1 then its ancestor
j € T is strongly dominant ir§; with C;(S;) > ¢/ andp; = p;» + x. Therefore, a removal step cannot increase the
number of jobs in our target group and the processing time of each job in the target group after this step is reduced
by the combined length of the removed intervals in this step in comparison to its ancestor job.
Assume that condition (8) holds for scheddle Then we havé’ = Cinax(S) — Crmax(Si/) = Cmax(S1) +r —
Cmax(Si) < 2r as the combined length of the time intervals removed in Stepsi2itbat mostr due to our
observations above.

t 1
>ti—7x

E. Naroska, U. Schwiegelshohn / Information Processing Letters 81 (2002) 297-304 303

Finally, we again consider two cases:
> 2- %)r. In this case the first inequality of condition (2) does not hold as we have removed too much from

schedules. Therefore, we introduce an additional jﬁ)lwith mpy=m,r;= 0 andpf =l'-(2- %)r to ;s such

thatf is always considered last in the job order of Algorititunst Scheduling. This generates;,; = 7, and
Si+1 = S,. Remember that at most — 1 machines can be idle at any momenfCmax(S)). This property
also holds for any schedulg with 1 <i <i'. Therefore,f will be started at timeCinax(S;7) in schedules,
resulting inCmax(S) — Cmax(Sy) = (2 — n—11)r. Note that jobf will not affect the completion time of any other
job in §,. For the sake of easier handling we defjmgegj) =0, Moy =m andrg(;) = 0. Further, we assume

thatg(f) is a job int although it has a processing time of 0. Therefore, we Pfaqefn. For the validity of
condition (2) it remains to be shown that properties (3) to (5) hold.
We setr = r + maxt;,, MaX;cz, c;(s,)—p; >, (P 1} Property (3) holds as there js < max;,, pg(j) —r} for

all jobs in 7 that do not start after timg, in S due to the validity of condition (8) angl; <7 —r forjobf
and for all jobs inz; that start later tharlf,.

Letjob j € 7 be the last job that satisfies condition (8) in Ste@hen we havey, ;) — p; =r as itis otherwise
possible to satisfy condition (8) in Stéjby removing a smaller time interval. Remember thatgo}) executes

in S during all time intervals that are later removed in Steps 2 tnd that the combined length of these time
intervals is!’ — r. Therefore, jolg(j) does not start before tinie— (p,(;) — p;j) =1’ —r in schedules. Hence,

at leastn — m; + 1 machines are busy at any time instance in time intgfal — r) of schedules. Therefore,
jobs j” € with r; = 0 use at least a machine-time product of

rm; ~|—(l’—r)(m+1—mj) =U"—rm+r+@2r —l/)(mj - —r)m+r,
in the removed time intervals of schedleesulting in

1

jer|rj=0 J €Ty

Thisleadstoy ;.. mjp; —mr =3, mjpj (property (4)).

Property (5) holds itvf =1 —r. Otherwise there is at least one jgbe 7, with p;; > r — r that does not start

beforer — r. Remember that at least one dominant job starts at#imehen at least: + 1 —m j machines are

used at any moment in scheduleduring the time intervalO, r — r). Therefore, property (5) is valid as well.
<2 - %)r. In this case we may not have removed enough intervals so that property (4) holds. On the other

hand, we may also not be able to set r in order to ignore properties (4) and (5). Therefore, more intervals

must be removed. To this end we replace condition (8) with the following condition (9) and use the same

removing method as in Steps 2ito

1
Cmax(8) — Cmax(Si) = <2 - Z)’” or
Pg(j) —r < pj holds for every strongly dominant jgbe 7; in schedules;. 9)

Assume that condition (9) holds for schedile. If I = Cmax(S) — Crmax(Si7) = (2 — %)r we setn =i” and

prove the validity of properties (3) and (5) in the same way as in the first case.

As condition (9) holds for schedulg~ there is a (dominant) jol € 7;,» with p; > p,;y —r. Otherwise it is
possible to satisfy condition (9) by removing at least one smaller interval. Next consider all intervals of schedule
S that are removed in Steps 2 6. If g(j) starts after time' in scheduleS then each of those intervals also
starts after time- in §, that is, each of those intervals contains at least one job with release date O that starts
after timer in S. If job g(j) does not start later than timein S then an interval of schedulg contains a job

J' with g(j") = g(j) if itis removed in Step + 1 and starts at time 0 in schedwle Remember that an interval

of scheduleS; contains a jokj’ € 7; such thatg(j’) starts after time in scheduleS if the interval is removed

304 E. Naroska, U. Schwiegelshohn / Information Processing Letters 81 (2002) 297-304

in Stepi and begins after time 0 in schedulle Hence, we have 4 possible types of intervals that are removed

in Steps 1 ta”:

e Typel: Aninterval that is in0, ») and does not contain jof().

e Type2: An interval that is in0, ») and contains jolg (/).

e Type 3: Intervals that are not if0, r) and do not contain any jobs with release date 0 that start aftertime
schedules.

e Type 4: Intervals that are not ifD, r) and contain at least one job with release date 0 that starts after time
in schedules.

Assume that at least; machines are busy at any time instance of a Tyjpeerval and that; is the combined

length of all Typei intervals. Then, the following inequalities holgiy +m3 > m + 1, my +mag > m + 1,

ma+mazm+1,1+lb=rlo+I3<pey—pj<randiz+ig=(1- n—11)r. Therefore, jobs in the removed

time intervals of schedulg use at least a machine-time product of

4
. 1

Zlimi > I3(m1+m3) + (r — I3) min{m1, ma} + ((1 — Z)r — l3)m4

i=1

1
Zlam+1D+@F—Ilz)(m+1) — - rma

=rm+ <1— E)r >rm.
m

Hence, property (4) holds as well.
Otherwise ifl” < (2 — %)r then property (3) holds for all strongly dominant jobs. But for the validity of
property (4) we need to remove even more intervals without generating new strongly dominant jobs. To this end
we pick a jobj € T;» with the highest starting timeé > 0 in S;» among all jobs front;» and remove the smallest
time interval[t’, t" + x) such that eithex = p; (job j is completely removed) 0€max(S) — Cmax(Si7+1) =
2- %)r. Stepi” + 1 cannot generate a new dominant jobCHax(S) — Cmax(Si7+1) < (2 — %)r we repeat
this step with schedulé;~, 1 until we eventually obtain a job system and a scheduls,, such that either
Cmax(S) — Cmax(Sy) = (2— %)r or there is no joly € 7, that starts later than time 0 in scheddle
If no job j € 7, starts later than time 0 if§, then we set = r and are done as properties (4) and (5) are not
relevant.
If Cmax(S) — Cmax(Sy) = (2— %)r we sett = r + minft,, MaX;cz,(c;(s,)—p;>r 1P} If £ > r then property (5)
holds for the same reasons already explained in the first case. Finally, the validity of property (4) is shown in
exactly the same way as described above as all intervals of sch&dilat are removed in Step$+ 1 ton,
contain at least one job with release date 0 that starts aftertim§. O

References

[1] D. Shmoys, J. Wein, D. Williamson, Scheduling parallel machines on-line, SIAM J. Comput. 24 (6) (1995) 1313-1331.

[2] A. Feldmann, J. Sgall, S.-H. Teng, Dynamic scheduling on parallel machines, Theoret. Comput. Sci. 130 (1994) 49-72.

[3] M. Garey, R.L. Graham, Bounds for multiprocessor scheduling with resource constraints, SIAM J. Comput. 4 (2) (1975) 187—200.

[4] R.L. Graham, Bounds for certain multiprocessor anomalies, Bell System Technical J. 45 (1966) 1563-1581.

[5] R.L. Graham, Bounds on multiprocessor timing anomalies, SIAM J. Appl. Math. 17 (1969) 416—-429.

[6] A.Feldmann, B. Maggs, J. Sgall, D.D. Sleator, A. Tomkins, Competitive analysis of call admission algorithms that allow delay, Technical
Report CMU-CS-95-102, Carnegie-Mellon University, Pittsburgh, PA, 1995.

