
Information Processing Letters 81 (2002) 297–304

On an on-line scheduling problem for parallel jobs

Edwin Naroska, Uwe Schwiegelshohn∗
Computer Engineering Institute, University Dortmund, 44221 Dortmund, Germany

Received 26 July 2000; received in revised form 25 May 2001
Communicated by S. Albers

Abstract

This paper addresses the non-preemptive on-line scheduling of parallel jobs. In particular we assume that the release dates
and the processing times of the jobs are unknown. It is already known that for this problem Garey and Graham’s list scheduling
algorithm achieves the competitive factor 2− 1

m for the makespan ifm identical machines are available and if each job requires
only a single machine for processing. Here, we show that the same factor also holds in the case of parallel jobs. 2002 Elsevier
Science B.V. All rights reserved.

Keywords: On-line algorithms; Analysis of algorithms; Scheduling

1. Introduction

We address a well known on-line problem: A job systemτ consisting of independent parallel jobs must be sched-
uled onm identical machines without preemption. Each jobj ∈ τ is characterized by its fixed (integer) degree of
parallelism 1� mj � m, its processing timepj > 0 and its release daterj � 0. Exactlymj machines must be allo-
cated to a jobj at its start and will be released altogether once the processing is finished. Each machine can execute
at most one job at a time and the execution of jobj requires the same time on any subset ofmj machines. Further,
a job is not known before it is released and its processing time is unknown until the job has finished. We denote the
completion time of jobj in a scheduleS by Cj(S). Therefore, jobj starts at timeCj (S)−pj in scheduleS. In this
paper it is the goal of a scheduling algorithm to minimize the makespanCmax(S) = maxj∈τ Cj (S) of S. Further,
C∗

max(τ) is the minimal makespan of all valid schedules onm machines for job systemτ .
On-line problems are often evaluated with the help of the so called competitive ratioρ. Here, we say that an

on-line algorithm has a competitive ratioρ or isρ-competitive if Cmax(S) � ρC∗
max(τ) holds for any job systemτ

and for any scheduleS generated by this algorithm. Note that it may be a hard problem to find an optimal schedule
S′ with Cmax(S

′) = C∗
max(τ) even if all information aboutτ is already available at time 0.

Variants of this problem have already been addressed in the past. Shmoys, Wein and Williamson [1] proved
a lower bound of 2− 1

m
for the competitive ratio using an example of Graham. This bound also holds for the

restricted cases where all jobs are sequential (mj = 1 for all j ∈ τ) or are immediately available (rj = 0 for all

* Corresponding author.
E-mail addresses: edwin@ds.e-technik.uni-dortmund.de (E. Naroska), uwe@ds.e-technik.uni-dortmund.de (U. Schwiegelshohn).

0020-0190/02/$ – see front matter 2002 Elsevier Science B.V. All rights reserved.
PII: S0020-0190(01)00241-1

298 E. Naroska, U. Schwiegelshohn / Information Processing Letters 81 (2002) 297–304

j ∈ τ). Feldmann, Sgall and Teng [2] assumedrj = 0 for all jobs and proved that the on-line version of Garey and
Graham’s list scheduling algorithm [3] is 2− 1

m
competitive, see Lemma 3. For the sake of completeness we repeat

this algorithm that has been presented first by Graham in 1966 [4]:

Algorithm List Scheduling

repeat
for any unscheduled and released jobj do

if at leastmj machines are idle
startj immediately onmj idle machines

until all jobs inτ are scheduled

For the rest of the paper we say that a schedule is alist schedule if it is produced by AlgorithmList Scheduling.
Note that the algorithm does not require a specific processing order of the jobs and that another processing order
may result in a different list schedule and makespan. Specifically, the job order need not be based on the release
dates.

Further, Shmoys, Wein and Williamson [1] showed that introducing unknown release dates into the
scheduling model of Feldmann, Sgall and Teng will increase the competitive factor by at most a factor of 2. They
also state that a natural extension of the on-line version of Graham’s list scheduling [5] has a competitive factor of
at most 2− 1

m
in the presence of unknown release dates and unknown processing times. However, Shmoys, Wein

and Williamson only discussed the sequential case (mj = 1 for all j ∈ τ).
As Garey and Graham’s list scheduling algorithm yields an identical off-line performance guarantee for parallel

and sequential jobs it may seem reasonable to assume the same behavior in the on-line case as well. However, to our
knowledge no better competitive factor than 3 has been proven so far in the parallel job case, see Feldmann et al. [6].

2. Basic results

In this section we give a definition and some already known results that are later used to prove our main theorem.
We start by introducing a simple lower bound forC∗

max(τ).

C∗
max(τ) � C∗

max(τ) = max
0�t�maxj∈τ {pj +rj }

{
t + 1

m

∑
j∈τ |pj +rj >t

mj min{pj ,pj + rj − t}
}
.

To see the validity of this lower bound consider a jobj and a timet with pj + rj > t > rj . In any
valid schedule at least the workloadmj(pj + rj − t) of job j must be executed after timet . Also note that
C∗

max(τ) � maxj∈τ {pj + rj }.
Next, we define non overlapping time intervals of the schedule. These intervals are calledphases.

Definition 1. A phaseP of scheduleS is a time interval[tP , tP + lP) such that inS at least one job fromτ starts
or completes at timestP andtP + lP while no job fromτ starts or completes at any other time of the interval.

If at most�1
2m� machines are used during a phaseP we say thatP is thin.

Note that any machine is either busy or idle during a whole phase. Further, the time interval[0,Cmax(S)) can be
uniquely partitioned into the phases ofS.

With the help of these phases we introduce a necessary and sufficient condition for list schedules:

Lemma 2. Assume a phase P = [tP , tP + lP) of a schedule S and a job j ∈ τ such that Cj (S) � tP + lP and at
least mj machines are idle during P . Iff S is a list schedule then for any such pair (P, j)

• either job j is executed during P ,
• or it is not released before the end of P .

E. Naroska, U. Schwiegelshohn / Information Processing Letters 81 (2002) 297–304 299

Proof. (⇒) In a list scheduleS a machine is only left idle at any time instant if there is no unscheduled job that
can be started at this time instant.

(⇐) Sort the jobs inτ in increasing order by their starting date inS. Assume that AlgorithmList Scheduling
is using this order for the processing of jobs in its for-loop. Due to the ordering of the jobs and the conditions for
P andj Algorithm List Scheduling cannot start jobj earlier thanj is started in scheduleS. On the other hand,
machines, that execute jobj in scheduleS, will not be left idle by AlgorithmList Scheduling (not considering a
possible permutation of idle and busy machines within one or several phases). Therefore, AlgorithmList Scheduling
generates scheduleS. ✷

As already mentioned the next lemma is well known, see Feldmann, Sgall and Teng [2]. Here, we repeat the
lemma in a slightly different form and also give a version of its proof.

Lemma 3. Assume a job system τ with rj = 0 for all jobs j ∈ τ . Then for any list schedule S there is
Cmax(S) � (2− 1

m
)C∗

max(τ).

Proof. If list scheduleS does not contain any thin phase, that is, if at least�1
2(m + 1)� machines are used at any

time instance inS, we have

C∗
max(τ) � 1

m

∑
j∈τ

mjpj � m + 1

2m
Cmax(S) � m

2m − 1
Cmax(S) = 1

2− 1
m

Cmax(S).

Otherwise assume thatP is the last thin phase of scheduleS with mP > 0 machines being used duringP .
Further, let jobj execute duringP . Because of Lemma 2 we know that
• all phases in the interval[0,Cj (S) − pj) use at leastm − mj + 1 � m − mP + 1 machines,
• all phases in the interval[Cj(S) − pj ,Cj (S)) use at leastmP � mj machines as all jobs executing duringP

must also execute during all previous thin phases and
• for Cj (S) < Cmax(S) all phases in the interval[Cj(S),Cmax(S)) use at leastm − mP + 1 machines asP is the

last thin phase and all jobsj ′ starting not before the end ofP havemj ′ � m − mP + 1.
Therefore, a total machine-time product of at leastmP pj + (m−mP + 1)(Cmax(S)−pj) � mC∗

max(τ) is required
for τ . If pj � Cmax(S)

2− 1
m−mP +1

this results in

Cmax(S)

2− 1
m

� Cmax(S)

2− 1
m−mP +1

� pj � C∗
max(τ).

Otherwise as 2mP < m + 1 we have

C∗
max(τ) � 1

m

(
(m − mP + 1)Cmax(S) − (m − 2mP + 1)pj

)

�
(

m − mP + 1− m − 2mP + 1

2− 1
m−mP +1

)
Cmax(S)

m

= m − mP + 1

2m − 2mP + 1
Cmax(S) � 1

2− 1
m

Cmax(S). ✷

3. Main result

We now claim that the property of Lemma 3 holds as well in the presence of unknown release dates.

Theorem 4. Assume a job system τ . Then for any list schedule S there is Cmax(S) � (2− 1
m

)C∗
max(τ).

300 E. Naroska, U. Schwiegelshohn / Information Processing Letters 81 (2002) 297–304

Proof. If the first release date in a job systemτ is r > 0 we simply subtractr from the release dates and the
completion times of all jobs in any scheduleS. For the resulting job systemτ ′ and scheduleS′ we obtain the ratio

Cmax(S
′)

C∗
max(τ

′)
= Cmax(S) − r

C∗
max(τ) − r

� Cmax(S)

C∗
max(τ)

� 1.

Therefore, it is sufficient to consider only those job systems where the first release date is always 0.
The theorem is proven in an inductive fashion. To this end, we assume that the theorem is valid for all job

systems with at mostk different release dates. Note that the initial casek = 1 is addressed in Lemma 3. Next, we
consider a list scheduleS for an arbitrary job systemτ with k + 1 release dates where 0 andr > 0 are the first two
different release dates.

If there is a jobj ∈ τ such that 0< Cj ′(S) � rj for all jobs j ′ ∈ τ with rj ′ < rj we obtain scheduleS′ and
job systemτ ′ from S and τ by simply removing all those jobsj ′ with rj ′ < rj from τ andS. This results in
Cmax(S

′) = Cmax(S) andC∗
max(τ

′) = C∗
max(τ) with τ ′ having at mostk different release dates and a positive first

release date. Therefore, we assume in the remaining parts of the proof that at least one machine is busy at any time
instant in[0,Cmax(S)).

In the main part of the proof we are looking for a way to transform job systemτ = τ0 and list scheduleS = S0
into a new job systemτn and a list scheduleSn such that the following two conditions are satisfied:

τn has at mostk different release dates. (1)

C∗
max(τ) − C∗

max(τn) � r � Cmax(S) − Cmax(Sn)

2− 1
m

. (2)

Due to our induction assumption we haveCmax(Sn) � (2− 1
m

)C∗
max(τn). This yields

Cmax(S) � Cmax(Sn) +
(

2− 1

m

)
r �

(
2− 1

m

)
C∗

max(τn) +
(

2− 1

m

)
r �

(
2− 1

m

)
C∗

max(τ).

It remains to be shown that such a transformation fromτ andS into τn andSn exists. In order to obtain schedule
Sn we repeatedly remove time intervals from scheduleS. To this end we first define a basicremoval operation: the
removal of a time interval[ta, tb) ⊆ P from scheduleS, with P being a phase inS, generates a job systemτ ′ by
transforming every jobj ∈ τ into a jobj ′ and produces a new scheduleS′. This transformation has the following
properties:

mj ′ = mj, pj ′ =
{

pj − (tb − ta) if job j executes duringP in S,

pj otherwise,

rj ′ =
{

max{rj − (tb − ta), ta} if rj > ta in S,

rj otherwise,
Cj ′ (S′) =

{
Cj (S) − (tb − ta) if Cj (S) � tb,

Cj (S) otherwise.

If S is a list schedule thenS′ is a list schedule as well due to Lemma 2. For the sake of an easier notation we
allow jobsj ′ with pj ′ = 0 in job systemτ ′ if rj ′ = 0 holds. Note that those jobs do not affect the makespan of
scheduleS′.

We will use one or more removal operations within a Stepi to generate scheduleSi and job systemτi from
scheduleSi−1 and job systemτi−1. To express that a jobj ∈ τi−1 is transformed into jobj ′ ∈ τi we use the
notationj ′ = fi(j). As long as we apply only removal operations to transform job systemτ into job systemτi ,
every jobj ′ ∈ τi is originally derived from a jobj ∈ τ . We denote this relation byj = g(j ′). Further, we define the
so called set of first jobs̃τi = {j ∈ τi |rg(j) = 0}, that is, the set of those jobs that are originally derived from jobs
with release date 0.

First, we want to satisfy condition (1). To this end we remove the time interval[0, r) from S in Step 1 of the
transformation and obtain list scheduleS1 and job systemτ1. This step transforms every jobj ∈ τ with rj � r into

E. Naroska, U. Schwiegelshohn / Information Processing Letters 81 (2002) 297–304 301

a job j ′ = f1(j) ∈ τ1 with rj ′ = rj − r andpj ′ = pj . As 0 andr are the first two different release dates of job
systemτ , job systemτ1 has onlyk different release dates.

In order to prove the validity of condition (2) we need to remove more intervals fromS1. While it is easy to
see whether the inequalityCmax(S)−Cmax(Sn)

2− 1
m

� r holds it is rather difficult to address the inequalityC∗
max(τ) − r �

C∗
max(τn). Therefore in the latter case, we look for an equivalent formulation that is easier to handle. To this end

let us assume that there is a timet̄ in interval[r,Cmax(S)] such that the following properties hold for job systemτn

and scheduleSn:

For all jobsj ∈ τ̃n there ispj � max{pg(j) − r, t̄ − r}. (3)∑
j ′∈τ

mj ′pj ′ − mr �
∑
j∈τn

mjpj if t̄ > r. (4)

∑
j∈τn|rj<t

mj min{pj , t − rj } � mt for all t with t � t̄ − r providedt̄ > r. (5)

Intuitively, property (3) guarantees that after the removal operations the processing time of each job with release
date 0 is either reduced byr or is not more than̄t − r. As a removal operation cannot increase the processing time
or the release date of any job, the first transformation step (for all jobsj ∈ τn \ τ̃n) and property (3) (for all jobs
j ∈ τ̃n) together yield

max
{
0, rg(j) + pg(j) − t

}
� rj + pj − (t − r)

for all t � t̄ and for each jobj ∈ τn with rj + pj � t − r. This results in∑
j ′∈τ |rj ′+pj ′�t

mj min{pj ′ , rj ′ + pj ′ − t} �
∑

j∈τn|rj +pj �t−r

mj min
{
pj , rj + pj − (t − r)

}
(6)

for all t � t̄ . If t̄ = r then inequality (6) already guaranteesC∗
max(τ) − r � C∗

max(τn).
If t̄ > r then property (3) only addressest � t̄ − r in the definition of the lower bound. Therefore, we

further need properties (4) and (5) to handlet < t̄ − r. First note that
∑

j∈τn
mjpj = ∑

j∈τn|rj<t mj min{pj ,

t − rj } + ∑
j∈τn|rj +pj �t mj min{pj , rj + pj − t} holds for allt � 0. Then properties (4) and (5) yield

C∗
max(τ) − r � 1

m

∑
j ′∈τ

mj ′pj ′ − r � 1

m

∑
j∈τn

mjpj

= 1

m

(∑
j∈τn|rj <t

mj min{pj , t − rj } +
∑

j∈τn|rj+pj �t

mj min{pj ,pj + rj − t}
)

� max
0�t ′�t̄−r

{
t ′ + 1

m

∑
j∈τn|rj +pj �t ′

mj min{pj , rj + pj − t ′}
}
. (7)

Therefore, inequalities (6) and (7) combined yieldC∗
max(τ) − r � C∗

max(τn). Hence, condition (2) becomes valid if
such at̄ exists and if(2− 1

m
)r � Cmax(S) − Cmax(Sn) holds.

As already mentioned such āt may not exist for scheduleS1. As Cmax(S) − Cmax(S1) = r we may remove
more time intervals with a combined length of up to(1− 1

m
)r from S1 such that a suitablēt can be found. Before

describing those removal steps in detail we introduce another definition with respect to job systemτi and the
corresponding list scheduleSi :

Definition 5. A job j ∈ τ̃i is calleddominant or strongly dominant in scheduleSi if 2pj � Cj (Si) or 2pj > Cj (Si)

holds, respectively.t ti = maxj∈τ̃i |2pj�Cj (Si){Cj(Si) − pj } denotes the highest starting time of any dominant job in
scheduleSi .

302 E. Naroska, U. Schwiegelshohn / Information Processing Letters 81 (2002) 297–304

Note thatSi always contains a dominant job as we allow jobs with processing time 0 in this proof. Further, if
there is a jobj ∈ τ̃i that starts beforet ti in scheduleSi we usetbi = maxj∈τ̃i |Cj (Si)−pj<t ti

{Cj(Si) − pj } to describe
the highest starting time of any such job.

We briefly discuss the meaning of strongly dominant jobs in the context of our proof. If a jobj ∈ τ̃n is not
strongly dominant in scheduleSn then the selection̄t = pj + r guarantees the validity of property (5) asj does
not start beforēt − r in scheduleSn and at leastm + 1 − mj machines must be busy at any time instance up to
the starting time ofj in Sn, see Lemma 2. Therefore, we can simply pick the job with the largest processing time
among those jobs for the selection oft̄ . Of course property (3) is also correct for all those jobs. However, we still
need to make sure that property (3) holds for all strongly dominant jobsj ∈ τ̃n.

As we further requirēt � t ti + r, we execute the following series of steps until subsequent condition is valid for
scheduleSi :

There is no strongly dominant jobj ∈ τ̃i in scheduleSi with pj > max{t ti , pg(j) − r}. (8)

If condition (8) does not hold for scheduleSi we pick the jobjt ∈ τ̃i starting at timet ti in Si with the largest
processing time. We need to consider two cases:
1. If jt is strongly dominant we remove the time interval[t ti , t ti + x) in Stepi + 1 to obtainτi+1 andSi+1. x is the

smallest value such that anyone of the following conditions holds:
• x = pjt − t ti , that is,fi+1(jt) is dominant but not strongly dominant in scheduleSi+1.
• t ti+1 > tti .
• Condition (8) is valid for scheduleSi+1.
This step results inpjt −pfi+1(jt) = x. Note thatt ti+1 � t ti holds asfi+1(jt) is always a dominant job. Ift ti+1 > tti
then no strongly dominant job can start in the time interval(t ti , t

t
i+1] in scheduleSi+1 as otherwise the condition

t ti+1 > tti can be satisfied with a smaller value ofx.
2. If jt is not strongly dominant, that is, if there is no strongly dominant job starting at timet ti in scheduleSi , then

there is a timetbi in scheduleSi asτ̃i must contain a strongly dominant job inSi . We pick any jobjb ∈ τ̃i that
starts at timetbi and remove the time intervals[tbi , tbi + 1

2x) and[t ti , t ti + 1
2x) to obtainτi+1 andSi+1. Again,x

is the smallest value such that anyone of the following conditions holds:
• x = 2pjb , that is,pfi+1(jb) = 0.
• x = 2(t ti − tbi), that is, both removed intervals merge.
• t ti+1 > tti − 1

2x.
• Condition (8) is valid for scheduleSi+1.
Again,fi+1(jt) is always a dominant job. Therefore,t ti+1 � t ti − 1

2x. If t ti+1 > tti − 1
2x then no strongly dominant

job can start in the time interval(tbi � t ti − 1
2x, tti+1] in scheduleSi+1 as otherwise the conditiont ti+1 > tti − 1

2x

can be satisfied with a smaller value ofx.
Intuitively we can say that our target group consist those strongly dominant jobs that prevent the validity of

condition (8). Each job in the target group completes after timet ti in scheduleSi . Let us discuss what happens to
this target group when a removal step is executed. First note that no strongly dominant job can start in schedule
Si after the beginning of any interval removed in Stepi + 1. Further, any time instancet > tti+1 in scheduleSi+1

corresponds with a time instance in scheduleSi that comes after the end of any interval removed in Stepi. Hence,
if there is a strongly dominant jobj ′ = fi+1(j) ∈ τ̃i+1 in scheduleSi+1 with Cj ′(Si+1) > tti+1 then its ancestor
j ∈ τ̃i is strongly dominant inSi with Cj (Si) > tti andpj = pj ′ + x. Therefore, a removal step cannot increase the
number of jobs in our target group and the processing time of each job in the target group after this step is reduced
by the combined length of the removed intervals in this step in comparison to its ancestor job.

Assume that condition (8) holds for scheduleSi′ . Then we havel′ = Cmax(S) − Cmax(Si′) = Cmax(S1) + r −
Cmax(Si′) � 2r as the combined length of the time intervals removed in Steps 2 toi ′ is at mostr due to our
observations above.

E. Naroska, U. Schwiegelshohn / Information Processing Letters 81 (2002) 297–304 303

Finally, we again consider two cases:
1. l′ > (2− 1

m
)r. In this case the first inequality of condition (2) does not hold as we have removed too much from

scheduleS. Therefore, we introduce an additional jobĵ with m
ĵ

= m, r
ĵ
= 0 andp

ĵ
= l′ − (2− 1

m
)r to τi′ such

that ĵ is always considered last in the job order of AlgorithmList Scheduling. This generatesτi′+1 = τn and
Si′+1 = Sn. Remember that at mostm − 1 machines can be idle at any moment in[0,Cmax(S)). This property
also holds for any scheduleSi with 1 � i � i ′. Therefore,ĵ will be started at timeCmax(Si′) in scheduleSn

resulting inCmax(S) − Cmax(Sn) = (2 − 1
m

)r. Note that jobĵ will not affect the completion time of any other
job in Sn. For the sake of easier handling we definep

g(ĵ)
= 0, m

g(ĵ)
= m andr

g(ĵ)
= 0. Further, we assume

that g(ĵ) is a job inτ although it has a processing time of 0. Therefore, we haveĵ ∈ τ̃n. For the validity of
condition (2) it remains to be shown that properties (3) to (5) hold.
We sett̄ = r + max{t t

i′ ,maxj∈τ̃n|Cj (Sn)−pj>t t
i′
{pj }}. Property (3) holds as there ispj � max{t t

i′ ,pg(j) − r} for

all jobs in τ̃i′ that do not start after timet t
i′ in Si′ due to the validity of condition (8) andpj � t̄ − r for job ĵ

and for all jobs inτ̃i′ that start later thant t
i′ .

Let jobj ∈ τ̃i′ be the last job that satisfies condition (8) in Stepi ′. Then we havepg(j) −pj = r as it is otherwise
possible to satisfy condition (8) in Stepi ′ by removing a smaller time interval. Remember that jobg(j) executes
in S during all time intervals that are later removed in Steps 2 toi ′ and that the combined length of these time
intervals isl′ − r. Therefore, jobg(j) does not start before timel′ − (pg(j) −pj) = l′ − r in scheduleS. Hence,
at leastm − mj + 1 machines are busy at any time instance in time interval[0, l′ − r) of scheduleS. Therefore,
jobsj ′ ∈ τ with rj ′ = 0 use at least a machine-time product of

rmj + (l′ − r)(m + 1− mj) = (l′ − r)m + r + (2r − l′)(mj − 1) � (l′ − r)m + r,

in the removed time intervals of scheduleS resulting in
∑

j∈τ |rj=0

mjpj −
∑
j ′∈τ̃n

mj ′pj ′ � (l′ − r)m + r −
(

l′ −
(

2− 1

m

)
r

)
m = rm.

This leads to
∑

j∈τ mjpj − mr �
∑

j ′∈τn
mj ′pj ′ (property (4)).

Property (5) holds ifp
ĵ

= t̄ − r. Otherwise there is at least one jobj ′ ∈ τ̃n with pj ′ � t̄ − r that does not start

beforet̄ − r. Remember that at least one dominant job starts at timet t
i′ . Then at leastm + 1− mj ′ machines are

used at any moment in scheduleSn during the time interval[0, t̄ − r). Therefore, property (5) is valid as well.
2. l′ � (2− 1

m
)r. In this case we may not have removed enough intervals so that property (4) holds. On the other

hand, we may also not be able to sett̄ = r in order to ignore properties (4) and (5). Therefore, more intervals
must be removed. To this end we replace condition (8) with the following condition (9) and use the same
removing method as in Steps 2 toi ′:

Cmax(S) − Cmax(Si) =
(

2− 1

m

)
r or

pg(j) − r < pj holds for every strongly dominant jobj ∈ τ̃i in scheduleSi . (9)

Assume that condition (9) holds for scheduleSi′′ . If l′′ = Cmax(S) − Cmax(Si′′) = (2 − 1
m

)r we setn = i ′′ and
prove the validity of properties (3) and (5) in the same way as in the first case.
As condition (9) holds for scheduleSi′′ there is a (dominant) jobj ∈ τ̃i′′ with pj � pg(j) − r. Otherwise it is
possible to satisfy condition (9) by removing at least one smaller interval. Next consider all intervals of schedule
S that are removed in Steps 2 toi ′′. If g(j) starts after timer in scheduleS then each of those intervals also
starts after timer in S, that is, each of those intervals contains at least one job with release date 0 that starts
after timer in S. If job g(j) does not start later than timer in S then an interval of scheduleSi contains a job
j ′ with g(j ′) = g(j) if it is removed in Stepi + 1 and starts at time 0 in scheduleSi . Remember that an interval
of scheduleSi contains a jobj ′ ∈ τ̃i such thatg(j ′) starts after timer in scheduleS if the interval is removed

304 E. Naroska, U. Schwiegelshohn / Information Processing Letters 81 (2002) 297–304

in Stepi and begins after time 0 in scheduleSi . Hence, we have 4 possible types of intervals that are removed
in Steps 1 toi ′′:
• Type 1: An interval that is in[0, r) and does not contain jobg(j).
• Type 2: An interval that is in[0, r) and contains jobg(j).
• Type 3: Intervals that are not in[0, r) and do not contain any jobs with release date 0 that start after timer in

scheduleS.
• Type 4: Intervals that are not in[0, r) and contain at least one job with release date 0 that starts after timer

in scheduleS.
Assume that at leastmi machines are busy at any time instance of a Typei interval and thatli is the combined
length of all Typei intervals. Then, the following inequalities hold:m1 + m3 � m + 1, m1 + m4 � m + 1,
m2 + m4 � m + 1, l1 + l2 = r, l2 + l3 � pg(j) − pj � r andl3 + l4 = (1− 1

m
)r. Therefore, jobs in the removed

time intervals of scheduleS use at least a machine-time product of

4∑
i=1

limi � l3(m1 + m3) + (r − l3)min{m1,m2} +
((

1− 1

m

)
r − l3

)
m4

� l3(m + 1) + (r − l3)(m + 1) − 1

m
rm4

= rm +
(

1− m4

m

)
r � rm.

Hence, property (4) holds as well.
Otherwise if l′′ < (2 − 1

m
)r then property (3) holds for all strongly dominant jobs. But for the validity of

property (4) we need to remove even more intervals without generating new strongly dominant jobs. To this end
we pick a jobj ∈ τ̃i′′ with the highest starting timet ′ > 0 in Si′′ among all jobs from̃τi′′ and remove the smallest
time interval[t ′, t ′ + x) such that eitherx = pj (job j is completely removed) orCmax(S) − Cmax(Si′′+1) =
(2 − 1

m
)r. Stepi ′′ + 1 cannot generate a new dominant job. IfCmax(S) − Cmax(Si′′+1) < (2 − 1

m
)r we repeat

this step with scheduleSi′′+1 until we eventually obtain a job systemτn and a scheduleSn such that either
Cmax(S) − Cmax(Sn) = (2− 1

m
)r or there is no jobj ∈ τ̃n that starts later than time 0 in scheduleSn.

If no job j ∈ τ̃n starts later than time 0 inSn then we set̄t = r and are done as properties (4) and (5) are not
relevant.
If Cmax(S)−Cmax(Sn) = (2− 1

m
)r we sett̄ = r + min{t tn,maxj∈τ̃n|Cj (Sn)−pj >t tn

{pj }}. If t̄ > r then property (5)
holds for the same reasons already explained in the first case. Finally, the validity of property (4) is shown in
exactly the same way as described above as all intervals of scheduleS, that are removed in Stepsi ′′ + 1 to n,
contain at least one job with release date 0 that starts after timer in S. ✷

References

[1] D. Shmoys, J. Wein, D. Williamson, Scheduling parallel machines on-line, SIAM J. Comput. 24 (6) (1995) 1313–1331.
[2] A. Feldmann, J. Sgall, S.-H. Teng, Dynamic scheduling on parallel machines, Theoret. Comput. Sci. 130 (1994) 49–72.
[3] M. Garey, R.L. Graham, Bounds for multiprocessor scheduling with resource constraints, SIAM J. Comput. 4 (2) (1975) 187–200.
[4] R.L. Graham, Bounds for certain multiprocessor anomalies, Bell System Technical J. 45 (1966) 1563–1581.
[5] R.L. Graham, Bounds on multiprocessor timing anomalies, SIAM J. Appl. Math. 17 (1969) 416–429.
[6] A. Feldmann, B. Maggs, J. Sgall, D.D. Sleator, A. Tomkins, Competitive analysis of call admission algorithms that allow delay, Technical

Report CMU-CS-95-102, Carnegie-Mellon University, Pittsburgh, PA, 1995.

