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2.1 Chapter Overview

Combinatorial problems involving chains and antichains are at the heart

of research on posets. In this chapter, we discuss classic theorems such as

Dilworth’s theorem and its links to other linear programming gems. We

also provide proofs of the theorems of Greene and Kleitman, with a special

emphasis on the duality between the two results. We apply these results

back to the Erdő-Szekeres theorem for monotonic sequences, and we close

the chapter with a concise treatment of quite recent results by Duffus-Sands

and Howard-Trotter concerning pairwise disjoint families of maximal chains

and antichains.

2.2 Dilworth’s Theorem and Its Dual

Perhaps the two most fundamental parameters of partially ordered sets are

height and width. These parameters measure, quite naturally enough, how

“tall” and how “broad” the poset is. The height h(P ) of a poset† P is the

maximum cardinality of a chain in P ‡, while the width w(P ) of P is the

maximum cardinality of an antichain in P . Of course, if P is finite, then

both its height and width are finite, and as will be clear from the material

to follow, there is a natural duality between these two parameters.

Now consider the following natural extremal problem: Given a poset P ,

† As we commented in Chapter 1, when a poset remains fixed throughout a discussion, researchers
often prefer to use a single symbol such as P to denote a poset rather than the full P = (X,P )
and that is the convention we will follow in this chapter.
‡ Caution: Some authors use the term “height” for what is in our notation h(P )−1, so that the

two-element chain 2 has height 1. We are convinced that our convention is, for most purposes,
the more appropriate. To avoid any possibility of confusion, we never speak of the “length” of
a chain or a poset, which should properly be taken as the height minus one.
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Fig. 2.1. A Poset of Height 5

find the least positive integer s for which there is a partition

P = A1 ∪A2 ∪ . . . As

of P into pairwise disjoint subsets A1, A2, . . . , As with Aj an antichain for

each j = 1, 2, . . . , s. Evidently, s is at least as large as the height of P . Not

surprisingly, s is exactly equal to the height of P . The resulting elementary

theorem is generally credited to Mirsky [99], but it was known as part the

folklore of the subject and in fact appears as a remark in [99].

Theorem 2.2.1 A poset P of height h has a partition P = A1 ∪A2 ∪ . . . Ah

with Aj an antichain, for each j = 1, 2, . . . , h.

Proof For each x ∈ X, let h(x) be the largest integer r for which there

exists a chain x1 < x2 < · · · < xr with x = xr. Evidently, h(x) ≤ h for all

x ∈ P . Then for each j = 1, 2, . . . , h, let Aj = {x ∈ X : h(x) = j}. It is

easy to see that each Aj is an antichain.

This proof provides an efficient algorithm for finding a maximum chain

and a minimum size partition into antichains. Note that A1 is just the set

of minimal elements of P . Thereafter, Aj+1 is the set of minimal elements

of what remains when A1, A2, . . . , Aj have been removed. Furthermore, for

each j with 1 ≤ j < h, if x ∈ Aj+1, then there exists some y ∈ Aj with

x < y in P . So we can find a maximum chain in P by backtracking. This

approach is illustrated in Figure 2.2, where we show a partition of P into 5

antichains. The black points form a chain of size 5.

Now the dual problem: Given a poset P , find the least positive integer t

for which there is a partition

P = C1 ∪ C2 ∪ . . . Ct
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of P into pairwise disjoint subsets C1, C2, . . . , Ct with Ci a chain for each

i = 1, 2, . . . , t. Evidently, t is at least as large as the width of P , and the

classic theorem of R. P. Dilworth [99] asserts that these two values are equal.

Theorem 2.2.2 A poset P with width(P ) = t has a partition P = C1 ∪
C2 ∪ . . . Ct with Ci a chain, for each i = 1, 2, . . . , t.

We will provide four (yes, four!) proofs of Dilworth’s theorem, starting

with the one found in most texts. Here, the presentation is simplified by the

following notation. When P is a poset and x ∈ P , we let D(x) = {y ∈ P :

y < x in P}; D[x] = {y ∈ P : y ≤ x in P}; U(x) = {y ∈ P : y > x in P};
U [x] = {y ∈ P : y ≥ x}; and I(x) = {y ∈ P − {x} : x‖y in P}. When A

is a maximal antichain in P , we let D(A) = {y ∈ P : y < a in P , for some

a ∈ A} and D[A] = A ∪ D(A). The subsets U(A) and U [A] are defined

analogously.

Proof We proceed by induction on |P |, the result being trivial if |P | = 1.

Assume validity for all posets with |P | ≤ k and suppose that P is a poset

with |P | = k + 1. Choose a maximal point x and a minimal point y with

y ≤ x in P . Then set C = {x, y}, noting that |C| = 1 if x = y. Regardless,

|P − C| ≤ k.

Let w′ denote the width of the subposet P − C. If w′ < w, then there is

a partition P − C = C1 ∪ C2 ∪ · · · ∪ Cw′ with each Ci a chain. This implies

that P = C ∪C1 ∪C2 ∪ . . . Cw′ is a partition of P into w′ + 1 chains. Since

w′ + 1 ≤ w, the result holds for P .

Finally, we are left to consider the case where w′ = w. Choose a w-element

antichain A = {a1, a2, . . . , aw} ⊆ P −C. Note that x ∈ U(A), x /∈ D[A], y ∈
D(A) and y /∈ U [A]. Therefore, we can partition the subposets determined

by U [A] and D[A], respectively, into w chains.

Without loss of generality, we may label these partitions as U [A] = C ′1 ∪
C ′2 ∪ · · · ∪ C ′w and D[A] = C ′′1 ∪ C ′′2 ∪ · · · ∪ C ′′w, where ai ∈ C ′i ∩ C ′′i for

i = 1, 2, . . . , w. However, this implies that P = (C ′1 ∪C ′′1 )∪ (C ′2 ∪C ′′2 )∪ · · · ∪
(C ′w ∪ C ′′w) is a partition of P into w chains.

We illustrate Dilworth’s theorem with a diagram for a poset of width 7 in

Figure 2.2. The diagram also shows a partition into 7 chains, and the black

points form an antichain of size 7. Note that the chains need not consist of

“contiguous” points in the diagram.
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Fig. 2.2. A Poset of Width 7

2.3 Network Flows

Many undergraduate texts group Dilworth’s theorem with other classic com-

binatorial theorems, all exhibiting a common linear-programming theme. In

order that the arguments to follow will make sense, we provide a concise

summary of these results and how they are proved. Many readers can give

this section and the one to follow little more than a quick glance.

We consider networks, weighted digraphs satisfying the following three

properties: (1) There are distinguished vertices S and T called respectively,

the source and sink ; (2) All edges incident with S are oriented away from

S, and all edges incident with T are oriented towards T ; and (3) For every

edge (x, y), there is a non-negative capacity c(x, y).

A flow φ in a network is a function which assigns to each directed edge

e = (x, y) a non-negative value φ(e) = φ(x, y) ≤ c(x, y) so that the following

“conservation” law holds:

Amount In Equals Amount Out. For every vertex x which is neither

the source nor the sink,
∑

u φ(u, x) =
∑

v φ(x, v), i.e., the amount entering

x is equal to the amount exiting x.

The value of a flow φ is the quantity
∑

x φ(S, x), which by the conservation

law is also the quantity
∑

x φ(x, T ). In Figure 2.3, we illustrate a network

flow of value 84. In this figure, edges carry two labels. The first is the

capacity of the edge, and the second is the flow on the edge.

Of course, a network flow models the movement of goods from a point of

origination to a terminal point, subject to constraints on how much can be

transported across individual edges. The natural combinatorial problem is

then to find a flow of maximum value. Clearly, this is a linear-programming

problem, but there are special purpose algorithms which perform better than

an all-purpose LP algorithm in finding maximum flows.
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Fig. 2.3. A Network Flow Problem

2.3.1 Flows and Cuts

A cut in a network is a (L,U) where L ∪ U is a partition of the vertex set

into two non-empty subsets with S ∈ L and T ∈ U . The capacity of a cut

(L,U), denoted c(L,U), is defined by

c(L,U) =
∑

x∈L,y∈U
c(x, y).

The conservation law implies the following inequality: If φ is a flow and

(L,U) is a cut, then the value of φ cannot exceed the capacity c(L,U) of the

cut. Not surprisingly, this basic inequality is tight.

Theorem 2.3.1 The maximum value of a flow in a network is equal to the

minimum capacity of a cut.

Although we do not include the full details of the proof of this theorem

here, we sketch the key ideas as they are central to arguments which follow.

Let φ be a flow in a network, and let x be a vertex distinct from the source S.

An augmenting path from S to x is a sequence (S = u0, u1, u2, . . . , um = x)

of distinct vertices so that for each i = 0, 1, . . . ,m−1, either (1) The network

contains the edge (ui, ui+1) and φ(ui, ui+1) < c(ui, ui+1) (a forward edge), or

(2) the network contains the edge (ui+1, ui) and φ(ui+1, ui) > 0 (a backward

edge). When there is an augmenting path from S to T , then the value of

the flow can be increased by (1) increasing the flow on all forward edges and

(2) decreasing the flow on all backwards edges.
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If there are no augmenting paths from source to sink, then there is a

natural cut L ∪ U where L consists of S together with all points reachable

from S by augmenting paths. The conservation law now implies that the

value of the flow is the capacity of this cut.

The Ford-Fulkerson labeling algorithm searches for an augmenting path

from source to sink using breadth first search. This insures that the number

of vertices in the augmenting path has, at each step, the minimum number

of vertices. Paying attention to this detail means that the procedure will

halt with the number of iterations bounded as a function of the number

of vertices. Also, this algorithm implies that a network flow problem with

integer capacities has a optimum solution with integer valued flows. In

particular, if all capacities are 1, then there is an optimum flow in which the

flow on every edge is either 0 or 1.

As an illustration, consider the augmenting path P = (S,B,D,C, T ) in

the network shown in Figure 2.3. On this path, the edge (B,D) is backwards

while the remaining edges are forward. The amount of increase is limited to

8 by the foward edge (C, T ) where the capacity is 76 and the current flow is

68. Also, the backwards edge (B,D) limits the increase to 8 as there is only

a current flow of 8 on this edge. After augmentation, the value of the flow

is 92. Also, the labeling algorithm, when applied to the updated network,

will halt with L = {S,B,E, F} and U = {A,C,D, T}. The capacity of this

cut is 24 + 15 + 31 + 22 = 92.

2.4 Combinatorial Classics

Let G = (A,B,E) be a bipartite graph. Then for each subset S ⊆ X,

let N(S) = {b ∈ B : there exists some s ∈ S with sb ∈ E}. Here is the

first theorem in this grouping, popularly known as the defect form of Hall’s

marriage theorem.

Theorem 2.4.1 (Hall’s Theorem (Defect Form)) Let G = (A,B,E) be

a bipartite graph. Then the size of the largest matching in G is |A|−d where

d is the largest non-negative integer for which there exists a subset S ⊆ A

with |N(S)| ≤ |A| − d. In particular, there a complete matching of A into

B if and only if |N(S)| ≥ |S| for every subset S ⊆ A.

Proof Here are the key ideas behind the proof. Clearly, no matching can

be any bigger than |A| − d. We show that there is one of this size.

From the bipartite graph, we construct a network flow problem in which

all edges have capacity 1. Attach a source S with an edge from S to a for
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each vertex a ∈ A. Attach a sink T with an edge from b to T for each b ∈ B.

Orient all edges in G from A to B. Turn on a network flow algorithm and

find a maximum integral valued flow. Edges from A to B having flow 1 are

the edges in the maximum matching.

When the network flow algorithm halts with the partition (L,U), let S =

L∩A and letm be the number of vertices in S which are matched. Clearly, all

vertices in A which are not matched belong to S. It follows that |N(S)| = m.

In a similar vein, an analysis of the halting condition leads to the following

theorem.

Theorem 2.4.2 (König/Egerváry Theorem) Let G = (A,B,E) be a

bipartite graph. Then the maximum size of a matching in G is equal to the

minimum number of vertices required to cover all edges of G.

Theorem 2.4.3 (Menger’s Theorem, Vertex Version) Let G be a graph

and let x and y be non-adjacent vertices in G. Then the minimum number

of vertices whose removal from G leaves x and y in separate components is

equal to the maximum number of vertex disjoint paths from x to y in G.

Proof Again a sketch of the key ideas: Form a network flow problem with x

as source and y as sink. All edges incident with x oriented away from x. All

edges incident with y oriented towards y. All other edges uv replaced by two

edges (u, v) and (v, u). Split each vertex u distinct from x and y into two

new vertices u′ and u′′. All edges that were coming into u now go to u′. All

edges that used to leave u now leave from u′′. Add edge (u′, u′′). All edges

in the resulting network have capacity 1. Turn on a max-flow algorithm.

From each path in the resulting flow, find a point u where u′ is labeled and

u′′ is not. This results in a separating set whose size is the number of paths

from x to y.

Theorem 2.4.4 (Menger’s Theorem, Edge Version) Let G be a graph

and let x and y be distinct vertices in G. Then the minimum number of

edges whose removal from G leaves x and y in separate components is equal

to the maximum number of edge disjoint paths from x to y in G.

Proof Same idea as the vertex version, but even easier, as we don’t need to

split vertices.
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When G is a graph and S ⊂ G, let odd(S) denote the number of odd

components in the induced subgraph G− S. Here’s a theorem in this class

whose proof (as typically presented) uses Hall’s matching theorem at a key

point. We state the result in defect form

Theorem 2.4.5 (Tutte’s 1-Factor Theorem (Defect Form)) Let M
be a maximum matching in a graph G. The number of unmatched vertices

equals the largest non-negative integer d for which there is a set S of vertices

for which odd(S) = |S| − d. In particular, G has a perfect matching if and

only if odd(S) ≤ |S| for every subset S of the vertex set of G.

2.4.1 The Gallai-Millgram Theorem

Although it belongs to the class of problems we discussed in the preceding

section, we place the Gallai-Millgram theorem in a category by itself because

of its role in the proof of the Greene-Kleitman theorem which will come later

in this chapter. Let G be an oriented graph. A directed path P is a sequence

x1, x2, . . . , xt of distinct vertices of G so that (xi, xi+1) is an edge of G for

all i = 1, 2, . . . , t − 1. The vertex x1 is the starting point of P while xt is

the ending point of P . A path partition of G is a family P of directed paths

in G so that every vertex of G belongs to exactly one path in P. When P
is a path partition of G, we let E(P) denote the set of ending points of the

paths in P.

Here is Gallai-Millgram theorem [99], which we state in the “strong” form

that facilitates an easy inductive proof—and it is this strong form that we

will need later.

Theorem 2.4.6 (Gallai-Millgram Theorem) Let G be an oriented graph,

let m be the independence number of G, and let P be a path partition of G.

Then there exists a path partition Q of G so that |Q| ≤ m and E(Q) ⊆ E(P).

Proof We proceed by induction on the number of vertices in G. The theorem

holds trivially when G is a graph with only one vertex. Now assume that

for some k ≥ 1, the theorem holds for all oriented graphs with at most k

vertices, and suppose that G has k + 1 vertices.

Let P be a path partition of G, and let m be the independence number of

G. We may assume that |P| > m, else we simply takeQ = P. Now let P ∈ C,
let x be the ending point of P , letG′ = G−P , and letm′ be the independence

number of G′. Note that m′ ≤ m. By the inductive hypothesis, there exists
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a path partition P ′ of G′ with |P ′| ≤ m′ and E(P ′) ⊆ E(P) − {x}. Set

Q′ = {C} ∪ P ′.
If |Q′| < m, then we may take Q to be Q′. So we may assume that

m′ = m, so that |Q′| = m + 1. Label the paths in Q′ as P1, P2, . . . , Pm+1.

Also, for each i = 1, 2, . . . ,m+ 1, let xi be the ending point of Pi,

The set E(Q′) = {x1, x2, . . . , xm+1} is not an independent set in G, so

without loss of generality, we may assume that these paths have been labelled

so that (x2, x1) is an edge in G. If |P1| = 1, then we may take Q as

{P2 ∪ {x1}, P2, P3, . . . , Pm+1}. So we may assume that |C1| ≥ 2. Let y1 be

the next to last point on P1.

Now let G′′ = G− x1, and let m′′ be the independence number of G′′. Of

course, m′′ ≤ m. We apply the inductive hypothesis to the path partition

P ′′ = {P1−{x1}, P2, . . . , Pm+1} of G′′ and conclude that there exists a path

partition Q′′ of G′′ so that |Q′′| ≤ m′′ and E(Q′′) ⊆ E(P ′′) ⊆ E(P). If y1 is

the ending point of a path P ∈ Q′′, we simply add x1 to the end of P and

take the resulting path partition as Q. So we may assume that y1 /∈ E(Q′′).
If x2 is the ending point of a path in Q′′, then we can add x1 on the end

of that path to form Q. Finally, if x2 /∈ Q′′, then |Q′′| < m, so we can form

Q by adding x1 as a 1 point path.

When C is a chain in a poset P , we consider the largest element of C as its

ending point. When C = {C1, C2, . . . , Ct} is a chain partition, we let E(C)
denote the set of ending points of the chains in C. The following stronger

version of Dilworth’s theorem now follows as an immediate corollary.

Corollary 2.4.7 (Dilworth’s theorem) If P is a poset of width w, and C
is a chain partition of P , then there exists a chain partition P of P so that

|P| = w and E(P) ⊆ E(C).

We close this section with an easy corollary, which will be useful later in

this chapter.

Corollary 2.4.8 Let P be a poset and let S be an upset in P . If width(S) =

v < w = width(P ), then there exists a chain partition C = {C1, C2, . . . , Cv,

Cv+1, . . . , Cw} of P so that Ci ∩ S = ∅ when v < i ≤ w.

Proof First let D = {D1, D2, . . . , Cv} be a chain partition of S. Then form

a chain partition of P by adding one point chains for each point in X − S.

Then apply Corollary 2.4.7.
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2.4.2 Algorithmic Issues for Dilworth’s Theorem

Neither of the first two proofs we have provided for Dilworth’s theorem

seems to provide an effective algorithm for finding the width w of a poset

and a partition into w chains. However, Fulkerson [99] pointed out that this

apparent shortcoming can be readily overcome by exploiting the power of

the max-flow/min-cut theorem. Here is an outline of how to proceed.

Let P be a poset, and let |P | = n. Form a bipartite graph G = (X ′, X ′′, E)

with X ′ = {x′ : x ∈ P}, X ′′ = {x′′ : x ∈ P} and E = {x′y′′ : x < y in P}.
Use the network flow algorithm discussed earlier in this chapter to find a

maximum matching in G. Use this matching to construct a chain partition

of P by the following rule: A point x is covered by a point y in the chain

partition if and only if x′y′′ is an edge in the maximum matching. In making

this definition, we do not mean that covers in the chain partition are covers

in the poset.

Now here is the first of two key properties concerning the resulting chain

partition. The first involves the set of labeled and unlabeled points when the

network flow algorithm halts. The elementary proof is left as an exercise.

Proposition 2.4.9 If C = {x1 < x2 < · · · < xm} is one of the chains

constructed from the maximum matching, then there is some i for which x′i
is labeled and x′′i is unlabeled.

Here is the second observation. Again the elementary proof is omitted.

Proof Suppose the maximum matching results in w chains C1, C2, . . . , Cw.

Also suppose that for each i = 1, 2, . . . , w, we have chosen a point xi so that

x′i is labeled while x′′i is not. Then A = {x1, x2, . . . , xw is an antichain.

2.4.3 The Erdös-Szekeres Theorem

The following elementary result follows immediately from (either form of)

Dilworth’s theorem.

Lemma 2.4.10 If P is a poset, s and t are non-negative integers and |X| ≥
st+1, then either P contains a chain of size s+1 or an antichain of size t+1.

The following classic result follows easily.

Corollary 2.4.11 (Erdös-Szekeres Theorem) Let s and t be non-negative

numbers. Then in any sequence of st+ 1 distinct real numbers, there is ei-
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ther an increasing subsequence of length s + 1 or a decreasing subsequence

of length t+ 1.

Proof Define a partial order P on the set of numbers in the sequence by

setting ai < aj in P if and only if i < j in Z and ai < aj in R. A chain

in P is an increasing subsequence while an antichain in P is a decreasing

subsequence.

Here is a reformulation of the Erdős-Szekeres theorem, one that is has a

number of applications. The proof is an easy induction on the parameter k.

Corollary 2.4.12 Let m, k and n be positive integers. If n > m2k and

L0, L1, . . . , Lk is a family of linear orders on [n], then there exists an m-

element subset S ⊂ [n] so that for each j = 1, 2, . . . , k, either Lj(S) = L0(S)

or Lj(S) = Ld
0(S).

2.5 Perfect Graphs and Comparability Graphs

Many of the results discussed earlier in this chapter are pieces of a more

general topic: the theory of perfect graphs.

For a graph G, let χ(G) denote the chromatic number of G, and let ω(G)

denote the clique number. Evidently χ(G) ≥ ω(G) for all G, and in fact,

one the basic facts about chromatic number is that for every t ≥ 2, there is

a graph G with ω(G) = 2 and χ(G) = t. Nevertheless, there is particular

interest in graphs for which χ(G) = ω(G).

A graph G is perfect if χ(H) = ω(H) for every induced subgraph H of G,

It is easy to see that an odd cycle C2n+1 with 2n + 1 ≥ 5 vertices is not

perfect, as it has clique number 2 and chromatic number 3. Furthermore,

its complement C2n+1 is also not perfect, as it has clique number n and

chromatic number n+ 1. In 1961, C. Berge made the following challenging

conjecture:

Conjecture 2.1 (Strong Perfect Graph Conjecture) A graph is perfect

if and only if it contains no induced subgraph isomorphic to either an odd

cycle C2n+1 (n ≥ 2) or the complement of an odd cycle C2n+1 (n ≥ 2).

In 19xx, Lovász [99] proved the following intermediate result, which is

usually referred to as the “Perfect Graph Theorem” with Berge’s conjecture

then called the “Strong Perfect Graph Conjecture.”

Theorem 2.5.1 (Perfect Graph Theorem) A graph G is perfect if and

only if its complement G is perfect.
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Dilworth’s theorem asserts that the complement of a comparability graph

is perfect, while the dual form (partition into antichains) is equivalent to

showing that comparability graphs are perfect. So in view of Lovász’s Perfect

Graph Theorem, either result follows immediately from the other. So here

is our fourth and final proof of Dilworth’s theorem. Since a poset of height h

can be partitioned into h antichains, it follows that comparability graphs are

perfect. So by Theorem 2.5.1, so are incomparability graphs. This implies

Dilworth’s theorem!

We close this brief section with the remark that in 2003, Chudnovsky,

Robertson, Seymour and Thomas [99] succeeded in settling Berge’s conjec-

ture in the affirmative.

Theorem 2.5.2 (Strong Perfect Graph Theorem) A graph is perfect

if and only if it contains no induced subgraph isomorphic to either an odd

cycle C2n+1 (n ≥ 2) or the complement of an odd cycle C2n+1 (n ≥ 2).

The study of classes of perfect graphs, and the special case of compara-

bility and incomparability graphs in particular, remains an important topic

in graph theory, and we will return to the subject later in this monograph.

2.6 The Theorems of Greene and Kleitman

In this section, we shall discuss powerful extensions of Dilworth’s Theorem

and its dual, due to Greene and Kleitman [?]. Readers who have some famil-

iarity with this topic will sense right from the outset that our treatment does

not follow traditional lines. Instead, we elect to emphasize duality through-

out. However, at key points, we will pause to make sure the connections

between our approach and the original perspective is clear.

We start with some terminology. For the remainder of this chapter, we

only refer to a collection S of sets as a family when the sets in S are non-

empty and pairwise disjoint. When |S| = s, we will S is a s-family. Note that

s is just the cardinality of S. We will denote by 〈S〉 > the set
⋃
{S : S ∈ S},

a notation we prefer to
⋃
S. We will refer to |〈S〉| as the size of S. Naturally,

we will be concerned primarily with the case where S is either a family of

chains or a family of antichains in a poset P . However, in both cases, it will

be important that we do not require that a family in P be a partition of P ,

i.e., in general 〈S〉 will be a proper subset of P .

For a poset P , and a natural numbers k and m, let wk(P ) be the maxi-

mum cardinality of a subposet Y of P of height at most k, and let hm(P ) be

the maximum cardinality of a subposet Z of P of width at most m. By con-

vention, we set w0(P ) = 0 = h0(P ). Clearly, w1(P ) = w(P ), the ordinary
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Fig. 2.4. Maximum Size Chain and Antichain Families

width of P , while h1(P ) = h(P ), the ordinary height of P . Furthermore,

wk(P ) = |P | when k ≥ h(P ) and hm(P ) = |P | when m ≥ w(P ). When

k ≤ |P |, wk(P ) is the maximum size of a k-family of antichains in P , while

hm(P ) is the maximum size of an m-family of chains of P when m ≤ |P |.

Example 2.6.1 For the poset P shown in Figure 2.6.1, w1(P ) = 3; w2(P ) =

6; w3(P ) = 8; w4(P ) = 9 and wk(P ) = 10 for all k ≥ 5. Also, h1(P ) = 4,

h2(P ) = 8 and hm(P ) = 10 for all m ≥ 3.

2.6.1 Bounding the Size of Families

When S is a family in a poset P and r is a natural number, we define the

quantity vs(S) by:

vr(S) = r|C|+ |P − 〈C〉|

Proposition 2.6.2 Let m and k be natural numbers and let P be a poset on

n points. Also, let C be an family of chains and A a k-family of antichains

in P . Then

|〈A〉|+ |〈C〉| ≤ km+ n.

Proof We establish the equivalent statement:

|〈A〉| ≤ km+
(
n− 〈C〉|

)
.

To see this, note that 〈A〉 has height at most k, and any subset of P having

height at most k contains at most k elements from each of the chains in C,
together with some or all of the elements not in 〈C〉.
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Proposition 2.6.3 Let m and k be natural numbers and let P be a poset on

n points. Also, let C be an family of chains and A a k-family of antichains

in P . Then

wk(P ) ≤ vk(A) and hm(P ) ≤ vm(C).

And in particular

wk(P ) + hm(P ) ≤ km+ n.

Definition. Let m and k be natural numbers and let P be a poset on n

points. Also, let C be an family of chains and A a k-family of antichains in

P . We say that C is k-full if wk(P ) = vk(C) and we say that A is m-full if

hm(P ) = vm(A).

Example 2.6.4 Returning to the 10-element poset shown in Figure 2.6.1,

let

C1 =
{
{1, 2, 3}, {4, 5, 6}, {7, 8, 9, 10}

}
and C2 =

{
{1, 2, 5, 9, 10}, {7, 8}, {4, 6}

}
.

Then vk(C1) = 3k for k = 1, 2, 3 and vk(C1) = 10 for all k ≥ 4. It follows

that C1 is k-full for all k ≥ 1 except k = 3.

On the other hand, v1(C2) = 4, v2(C2) = 7, v3(C3) = 8, v4(C2) = 9 and

v5(C2) = 10 for all m ≥ 5. It follows that C2 is k-full if and only if k ≥ 3.

Now let

A =
{
{2, 4, 7}, {3, 5, 8}, {6, 9}

}
Then v1(A) = 5, v2(A) = 8 and vm(A) = 10 for all m ≥ 3. So A is m-full

for all m ≥ 1.

2.6.2 Statement of the Theorems

With this background discussion in mind, here is the full statement—in

aggregate form—of the theorems of Greene [99] and Greene-Kleitman [99].

The first part is actually the theorem due to Greene and Kleitman, while

the second part is due to Greene.

Theorem 2.6.5 (Greene-Kleitman Theorem) (The Theorems of

Greene and Kleitman) Let k and m be natural numbers and let P be a

poset. Then

There is a family C of chains in P which is both k-full and (k + 1)-full.

There is a family A of antichains in P which is both m-full and (m+1)-full.
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Example 2.6.1 only hints at the challenges to finding families of chains

that are k-full for multiple values of k. The full extent of the difficulties is

revealed in the following theorem of West [99].

Theorem 2.6.6 Let h and w be integers with h,w ≥ 4. Then there exist

poset Ph and Qw so that:

(i) For every pair k1 and k − 2 with 1 ≤ k1, k2 < h and |k1 − k2| ≥ 2,

there is no family of chains in Ph which is both k1-full and k2-full.

(ii) For every pair m1 and m−2 with 1 ≤ m1,m2 < w and |m1−m2| ≥ 2,

there is no family of antichains in Qw which is both k1-full and k2-

full.

Chapell [99] has constructed even smaller examples than the posets used

by West in proving Theorem ??, and the poset shown in Figure 2.6.1 is one

of his examples. Further details on Chappell’s examples are included in the

exercises.

One of the exercises at the end of the chapter is to construct the family

{Qw : w ≥ 4} as complements of the posets shown in Figure 11.

2.6.3 Saturated Chain and Antichain Partitions

Before proceeding with the proof, we pause to comment that many authors

present the theorems of Greene and Kleitman Theorem in an alternative

form, using chain and antichain partitions. We pause briefly here to show

that the two approaches are entirely equivalent.

Let H be a chain partition of the poset P and define the quantity ek(H)

by setting

ek(H) =
∑
C∈H

min{k, |C|}.

Clearly wk(H) ≤ ek(H) for every chain partition H. A chain partition H is

said to be k-saturated if wk(P ) = ek(H). The chain portion of Theorem 2.6.8

can then be restated as follows:

Theorem 2.6.7 For every poset P and every positive integer k, there is a

chain partition of P which is simultaneously k and k + 1-saturated.

To see that the two statements are equivalent, we note that if we have a

family C of chains in P that is k-full, we can extend C to a chain partition H
by adding all elements of P − 〈C〉 as single-element chains. It is easy to see

that H is k-saturated. Conversely, if H is a k-saturated chain partition of P ,
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then we can remove all chains having k or fewer elements to obtain a k-full

family C. Similar remarks apply for the antichain portion of Theorem 2.6.8.

2.6.4 Preliminary Steps

Despite our insistence on maintaining full duality in statments and presen-

tation for chains and antichains, we will have to tilt in one direction or

the other to move forward with the proof. For reasons that will become

clear, we focus on finding families of chains and our goal becomes to prove

the following statement, which as we have already noted, is known as the

Greene-Kleitman theorem:

Theorem 2.6.8 For every non-negative integer k and every finite poset P ,

there is a chain family C in P that is simultaneously k-full and (k + 1)-full.

Our next step is a lemma due to Saks [99].

Lemma 2.6.9 If k is a positive integer and P is a finite poset, then

wk(P ) = w(P × k).

Proof Let wk(P ) = t and let Y be a t-element subset of P having height

at most k. Partition Y into k antichains A1, . . . , Ak as in the proof of

Theorem 2.2, i.e., A1 is the set of minimal elements of Y and Ai+1 is the set

of minimal elements in the subposet obtained from Y after A1, A2, . . . , Ai

have been removed. The key feature of this partition is that if 1 ≤ i < j ≤ h,

x ∈ Ai and y ∈ Aj , then x 6> y in P .

For i = 1, . . . , k, set Bi = {(a, k− i) : a ∈ Ai} and B = B1∪B2∪ · · ·∪Bk.

It is clear that B is an antichain in P × k and |B| = |Y |. Thus w(P × k) ≥
wk(P ).

Conversely, if w(P × k) = s and B is an s-element antichain in P × k,

set Bi = {b : (b, i) ∈ B}, for each i = 0, . . . , k − 1 and then set Z =

B0 ∪B1 ∪ · · · ∪Bk−1. Note that the sets in {B0, B1, . . . , Bk−1} are pairwise

disjoint, so Z is a subposet of P having cardinality s and height at most k.

This shows wk(P ) ≥ w(P × k).

2.6.5 Details of the Proof

Our basic line of attack for proving the Greene-Kleitman theorem should

now be apparent. First, we assume that k + 1 ≤ h, otherwise the claim

holds trivially. In this case, we set m = wk+1(P ) − wk(P ) and note that
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m > 0. We then consider a chain partition F of P × k + 1, and make a

series of small changes while continuing to refer to the chain partition with

the symbol F . Throughout, we let Mi(F) = {x ∈ P : (x, i) is the top point

of some chain in F}. Again, the meaning of these sets changes over time.

We will use the same terminology that we used earlier in proofs of Dil-

worth’s theorem. Specifically, we say that x covers y in F when there is a

chain C in F so that x occurs immediately above y in C. In particular, we

do not require that x cover y in P when x covers y in F .

The goal for the series of alterations is to transform F into a family

satisfying the following four properties:

GK(1). |F| = wk+1(P ).

GK(2). |M0(F)| = wk+1(p)− wk(P ).

GK(3). Mk−1(F) ⊆Mk−2(F) ⊆M1(F) ⊆M0(F).

GK(4). If x ∈Mk(F)−Mk−1(F), then (x, k) covers (x, k − 1) in F .

Before proceeding with the details of the argument, let’s skip to the end

and see why these four properties are key. Assuming all four hold, consider

the chain partition of P induced by the restriction of the chains in F to

level k. Then let C denote the non-trivial chains in this family. Then all of

the top elements of chains in C belong to Mk(F) ∩Mk−1(P ). Let m = |C|
and let t = |P − 〈C〉|. Note that t ≥ |Mk(F)−Mk−1(P ). In view of GK(2)

and GK(3), we see that

wk+1(P )− wk(P ) = |M0(F)|
≥ |M1(F)| ≥ · · · ≥ |Mk−1(F)|
≥ |Mk(F) ∩Mk−1(P )|
≥ m

Also

wk+1(P ) = |F|
= t+ |M0(F)|+ |M1(F)|+ · · ·+ |Mk−1(F)|+ |Mk(F) ∩Mk−1(F)|
≥ (k + 1)m+ t

On the other hand, we know that wk+1(P ) ≤ (k + 1)m+ t from Proposi-

tion 2.6.3. This shows that wk+1(P ) = (k + 1)m+ t = vk+1(C), so that C is

(k + 1)-full. It also shows that

M0(F) = M1(F) = · · · = Mk−1(F) = Mk(F) ∩Mk−1(P )
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and that each of these sets has exactly m elements. Since wk+1(P ) −
wk(P ) = m, it follows that wk(P ) = km+ t = vk(C) so that C is also k-full.

Now on to the construction of a family F satisfying GK(1) through

GK(4). We start the construction by applying Corollary 2.4.8 to P ×k + 1

with the upset U = {(x, i) : x ∈ P, 1 ≤ i ≤ k}. We note that U is isomorphic

to P × k so the width of U is wk(P ). It follows that P × k + 1 has a chain

partition F properties GK(1) and GK(2).

Before we tackle GK(3) and GK(4), we need an additional property†
which is not listed as GK(5) since it is not essential to the closing argument.

Local Cover Property. If (x, i) covers (y, j) in F , then either (1) i = j or

(2) x = y and i = j + 1.

To achieve this property, we make alterations called insertions. When-

ever there is a chain C in F with (x, i) covering (y, j) in C, but neither

condition (1) nor (2) holds, we find the chain C ′ in F containing the point

(y, j + 1), remove it from C ′ and insert it between (x, i) and (y, j) in C.

Observe that performing an insertion does not change the fact that F sat-

isfies properties GK(1) and GK(2). To see that the sequence of insertions

must end, consider the vector (a0, a1, . . . , ak−1) where aj counts the number

of points y from P for which (y, j) is covered by the point (y, j + 1) in F .

When the insertion described above is performed, this vector advances lex-

icographically, since (y, j) is now covered by (y, j + 1) and all other covers

contributing to the counts in (a0, a1, . . . , aj) are unaffected.

Next, we aim for GK(3) and GK(4). Here the alterations are called

switches. In fact, we describe two different types of switches.

Type 1. Suppose there is some integer i with 1 ≤ i ≤ k for which x ∈
Mi(F) −Mi−1(F) and (x, i) does not cover (x, i − 1) in F . Let C be the

chain in F containing (x, i) as its top element. Since (x, i− 1) /∈ Mi−1(F),

there is a unique point y for which (y, i− 1) covers (x, i− 1) in F . Then let

C ′ be the chain containing the point (y, i). Note that (y, i) cannot by the

lowest point of C ′, for this would imply that C ∪C ′ is a chain which would

result in a chain partition of P × k + 1 of size wk+1(P )− 1. However, if we

let C ′′ be the portion of C ′ consisting of (y, i) and all the points of C ′ which

are above (y, i), then C ∪ C ′′ is a chain. We then modify F by removing C

and C ′ from F and replacing them by C ∪ C ′′ and C ′ − C ′′.

Type 2. Suppose that there is some i with 1 ≤ i ≤ k − 1 for which

x ∈ Mi(F)−Mi−1(F) and (x, i) covers (x, i− 1) in F . Let C be the chain

† Although we elect not to take this course here, the reader may note that the Local Cover
Property can be assured just by paying attention to details in the application of the Gallai-
Millgram theorem.
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for which (x, i) is the top element. Then let C ′ be the chain containing

(x, i+ 1). Again, we note that (x, i+ 1) is not the least element of C ′, so we

may assume that (y, i+ 1) is the element covered by (x, i+ 1). Now let C ′′

consist of (x, i+ 1) and all points of C ′ which are larger than (x, i+ 1), then

we modify F by first removing C and C ′ and replacing them by C ∪C ′′ and

C ′ − C ′′.

It is easy to see that the two types of switches preserve properties GK(1),

GK(2) and the local cover property. Also, they seem to be steering us

towards a family satisfying GK(3) and GK(4) as well. The only remain-

ing hurdle is to show that we will eventually reach a stage where no more

switches are available. To accomplish this, we let (b0, b1, b2, . . . , bk−1) be the

vector where bi counts the number of distinct points x from P so that if

(x, i) is covered by (y, j) in F , then (x, i + 1) is also covered by (y, j + 1).

Note that this definition does not require x and y to be distinct. Regardless,

each time we carry out a switch, this vector increases lexicographically. It

follows then that we will eventually reach a partition F satisfying GK(1)

through GK(4).

With this observation, our proof of the Greene-Kleitman theorem is com-

plete.

2.6.6 Co-ordinated Chain Partitions

Let P be a poset and let k be a positive integer. With a chain family C in P ,

we associate a special kind of chain partition G of P ×k. The partition G is

called a co-ordinated chain partition of P × k and the family C is called the

template for G. If C is an m-family, the partition G has km chains of the form:

{C ×{i} : C ∈ C, 0 ≤ i < k}. These chains are called horizontal chains. For

each x ∈ P − 〈C〉, G contains a k-element chain {(x, i) : 0 ≤ i < t}. These

chains are called vertical chains. So altogether, G contains vk(C) chains.

Now let us return to the proof of the claim for chain families which we

concluded just above. Again, we identified a family C of non-trivial chains

of P by considering the restriction of the chains in F to level k. Now let G
be the co-ordinated chain partition of P × k + 1 having C as its template.

Then G also satisfies GK(1) through GK(4).

We note here one immediate consequence of the Greene-Kleitman theo-

rem, which seems surprisingly hard to prove from first principles.

Corollary 2.6.10 For any poset P and any k,

wk+2(P )− wk+1(P ) ≤ wk+1(P )− wk(P ).
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Proof Let G be the co-ordinated chain partition having C as template. Recall

that C has m = wk+1(P )−wk(P ) non-trivial chains, each having size at least

k + 1. Then let H be the co-ordinated chain partition of P × k + 2 having

C as template. Evidently,

wk+2(P ) = w(P × (k + 2)) ≤ |H| = m+ |G| = 2wk+1(P )− wk(P ).

The stated inequality then follows immediately.

2.7 Towards Greene’s Theorem

In this section, we prepare to prove the following theorem, known as Greene’s

theorem.

Theorem 2.7.1 For every non-negative integer m and every finite poset

P , there is an antichain family A in P that is simultaneously m-full and

(m+ 1)-full.

Corollary 2.6.10 was an immediate consequence of our proof of the Greene-

Kleitman theorem. By way of contrast, we will establish the dual form of

this corollary first and then derive Greene’s theorem as a corollary.

2.7.1 Orthogonal Families

Let m and k be natural numbers and let P be a poset on n points. Then

let C be an m-family of chains, and let A be a k-family of antichains. If

|〈C〉|+ |〈A〉| = n+ km,

we say that C and A are orthogonal. When C and A are orthogonal, we note

that:

• Each chain in C intersects each antichain in A;

• Each element of P is in 〈C〉 ∪ 〈A〉;
• C is k-full, and A is m-full,

• |〈C〉| = hm(P ) = n+ km− wk(P ),

• |〈A〉| = wk(P ) = n+ km− hm(P ),

• Every maximum size m-family of chains is orthogonal to every maximum

size k-family of antichains.

For an n-element poset P , we define the set Γ(P ) to be the set of ordered

pairs (k,m) such that hm(P )+wk(P ) = n+km. As we have seen, there are

many different equivalent characterizations of Γ(P ). For instance, (k,m) ∈
Γ(P ) if and only if every maximum size m-family C of chains is k-full.
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h(P)

w(P)

Fig. 2.5. The structure of the set Γ(P ).

So the Greene-Kleitman Theorem says that, for every k, there is some m

such that both (k,m) and (k + 1,m) are in Γ(P ). Furthermore, as we have

already noted, the (unique) value of m is wk+1(P )− wk(P ).

Our aim is to show that, for any poset P with |P | = n, Γ(P ) has a

structure of the form illustrated in Figure 2.7.1. For a start, note that

(0,m) ∈ Γ(P ) if and only if hm(P ) = n, i.e., if and only if m ≥ w(P ).

Similarly, (k, 0) ∈ Γ if and only if k ≥ h(P ). We also know that (1, w(P ))

and (h(P ), 1) are in Γ(P ). So what we want to establish is that the remaining

elements of Γ(P ) form a “lattice path” from (1, w(P )) to (h(P ), 1), with each

step being either down or to the right.

To formalize this notion, we make the following definition. For each m,

let Γm(P ) = {k : (k,m) ∈ Γ(P )}. Our aim is then to prove the following

two claims.

Claim 1. If m is a natural number, then Γm(P ) is a set of consecutive

integers.

Proof. Suppose that k and k + s are, respectively, the least and greatest

members of Γm(P ). We show that all the integers between them also belong

to Γm(P ). First, we have the following equations for k and k + s.

wk+s(P ) = n+ (k + s)m− hm(P ) and wk(P ) = n+ km− hm(P ).

Thus wk+s(P )− wk(P ) = sm.

But from Corollary 2.6.10, we know that

wk+s(P )− wk(P ) =

s∑
i=1

wk+i(P )− wk+i−1(P ) ≤ s
(
wk+1(P )− w1(P )

)
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Moreover, from Proposition 2.6.3, we know that

wk+1(P ) ≤ n+ (k + 1)m− hm(P ) = wk(P ) +m,

so that wk+1(P ) − wk(P ) ≤ m. It follows that wk+i(P ) − wk+i−1(P ) = m,

for each i = 1, 2, . . . , s. Therefore wk+i(P ) = (k + i)m − hm(P ) for each

i = 0, 1, 2, . . . , s, which means that k+ i ∈ Γm(P ) for each i = 1, 2, . . . , s−1.

This completes the proof of the claim.

Claim 2. Let k be a non-negative number. Then let m and r be, respec-

tively, the least and greatest natural numbers so that k ∈ Γm(P ) and k ∈ Γr.

Then k ∈ Γp(P ) for every p with m < p < r.

Proof. If r ≤ m + 1, there is nothing to prove, so we assume r ≥ m + 2.

The hypothesis requires that

hm(P ) = n+ km− wk(P ) and hr(P ) = n+ kr − wk(P ).

so that hr(P )− hm(P ) = (r −m)k. Furthermore, we know that

hm+1(P ) ≤ n+ k(m+ 1)− wk(P ) = hm(P ) + k

so that hm+1(P )−hm(P ) ≤ k. So the conclusion of this second claim follows

just as in the proof of the first claim—if we can establish the following lemma.

Lemma 2.7.2 Let P be a poset and let m be a natural number. Then

hm+1(P )− hm(P ) ≥ hm+2(P )− hm+1(P ).

Proof We apply techniques from network flows. We set up a directed graph

D with vertex set P ∪{u, v}, where S (the source) and T (the sink) are not

in P . We have an arc from S to every vertex of P , and from every vertex

of P to T . Also, we have an arc (x, y) from x to y whenever x < y in P .

Let C be an m-family of chains with |〈C〉| = hm(P ). The family C corre-

sponds in a natural way to a set of m internally vertex-disjoint paths from

S to T in D: a chain x1 < x2 < · · · < xr corresponds to the directed

path (S, x1, x2, . . . , xr, T ) in D. Let A be the set of arcs on these paths,

so |A| = hm(P ) + m. Similarly, if C′ is an (m + 2)-family of chains with

|〈C′〉| = hm+2(P ), then it corresponds to a set of m + 2 paths with arc-set

A′ of size hm+2(P ) +m+ 2.

The basic idea is that “A′ −A” consists of two S → T paths, and adding

the longer one to A results in a large (m+ 1)-family of chains. The formal

justification takes some time, however.

Consider an auxiliary digraph D∗ with vertex set P ∪ {S, T} and arcs of
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Fig. 2.6. Linking arcs in D∗.

two types: firstly, every arc of A′−A appears in D∗, and secondly, for every

arc (x, y) of A−A′, the arc (y, x) appears in D∗. We observe that, for every

vertex x in P , the in-degree of x in D∗ is equal to the out-degree, while the

out-degree of S exceeds its in-degree by 2, and the in-degree of T exceeds

its out-degree by 2. In total, there are hm+2(P ) − hm(P ) + 2 more arcs of

the first type than of the second type.

We wish to link all the arcs of D∗ into walks and circuits. For a vertex x

of D∗ of in-degree and out-degree 1, we simply link the arc entering x with

the arc leaving x. The digraph D∗ may contain vertices x ∈ X of out-degree

and in-degree 2. This is the case only when x is on a chain . . . y < x < z . . .

in C, and on a chain . . . y′ < x < z′ . . . in C′, with y 6= y′ and z 6= z′. See

Figure 2.7.1. In this case, we link the arc (y′, x) of D∗ with the arc (x, y),

and link the arc (z, x) with the arc (x, z′). This means that, if there is an

arc (y, x) in A, and a different arc (y′, x) in A′, then (y′x) is linked to (x, y)

in D∗. Finally, if there are any arcs entering S, we link them in an arbitrary

way to arcs leaving T , and similarly for arcs leaving v.

In this way, we decompose the arc-set of D∗ into two S → T walks, and

possibly some circuits. The aim is to “augment” the arc set A by one of

these walks or circuits, resulting in another family of chains in P .

First, suppose one of the circuits H has more arcs of the first type than of

the second type. Then alter A by adding all the arcs of H of the first type

(which are in A′ and not A) and, for each arc (y, x) of H of the second type,
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removing (x, y). Let A∗ denote the new arc-set. Evidently all net in-degrees

are the same in A∗ as in A, and there are more arcs in A∗ than in A.

Can a vertex x of X have in-degree 2 in A∗? This would mean that an arc

(y, x) is present in A, and another arc (y′, x) is an arc of H of the first type:

but in this case the arc (x, y) would be an arc of the second type in D∗,

linked to (y′, x), so in H, and not in A∗. So every node of X has in-degree

and out-degree at most one in A∗. Thus A∗ corresponds to an m-family of

chains in P , with more elements than C, a contradiction.

Thus one of the two S → T walks W has at least 1
2 (hm+2(P )− hm(P ))+1

more arcs of the first type than of the second type. Just as before, we can

augment A by adding in the arcs of W of the first type, and removing the

reverses of the arcs of the second type. Again we get an arc-set corresponding

to a family of chains, but now there are m+ 1 chains, as the out-degree of S

has been increased. The total number of vertices on these chains is at least
1
2 (hm+2(P ) + hm(P )), so hm+1(P ) is at least this large.

This completes the proof of the lemma.

As we noted before, with the Lemma in hand, Claim 2 is valid and in

turn, the proof of Greene’s theorem is complete.

2.7.2 Reformulating Greene’s Theorem and Accompanying

Machinery

There are various attractive ways of re-formulating Theorem ??. Here, for

instance, is Frank’s version [?].

Corollary 2.7.3 For every poset P , there is a sequence B0,B1, . . . ,Bm
where:

• each Bi is either a family of chains or of antichains,

• B0 is a chain-partition of P , and B1 consists of one antichain,

• if Bi (i ≥ 2) is a family of chains, then it contains one fewer chain

than the previous family of chains on the list, while if it is a family of

antichains, it contains one more antichain than the previous family

of antichains,

• the final family of chains on the list contains just a single chain, and

the final family of antichains is an antichain-partition of P , and

• each Bi (i ≥ 1) is orthogonal to the previous member of opposite type

on the list.
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Fig. 2.7. A graph with no family of independent sets orthogonal to a 2-family of
cliques

Proof The list of families is obtained by walking along Γ(P ) from (0, w(P ))

to (h(P ), 1); on stepping from (k − 1,m) to (k,m), put any maximum-size

k-family of antichains into the list, and stepping from (k,m− 1) to (k,m),

put any maximum-size m-family of chains in the list.

Another reformulation of Theorem ?? is in terms of partitions of the

integer n, the size of P : see Exercise 15.

2.7.3 Greene-Kleitman and Perfect Graphs

The reader may well be asking whether this is all part of a much more

general theory, and whether results similar to the theorems of Greene and

Kleitman hold for perfect graphs in general. What would this mean? Given

a (perfect) graph G, let ck(G) be a maximum-size family of k disjoint cliques

in G. Can we always find, for some m, an “orthogonal” family of m disjoint

independent sets of size n+km−ck(G)? Unfortunately, even this is not true,

as shown by the example in Figure 2.7.3, first considered in this context by

Greene [?], with k = 2.

This graph, or sometimes its complement, can be used to refute most

other possible generalizations of the results of the last two sections to perfect

graphs.

2.8 Erdős-Szekeres revisited

The theorems of Greene and Kleitman presented in the previous section are

considerably more powerful than Dilworth’s theorem and its dual. So it is

not unreasonable to expect that applying these results to the setting of the
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result of Erdős and Szekeres, Theorem ??, will prove fruitful. Indeed, we

will now obtain what looks like a considerable extension of that result, with

very little extra work.

Theorem 2.8.1 For every n-element poset P , there is some positive integer

m, at most
√
n, such that either there are m chains of P covering at least

d1
2(n + m2)e elements, or there are m antichains of P covering at least

d1
2(n+m2)e elements.

Proof By Theorem ?? there is some m for which (m,m) ∈ Γ. This implies

that there is an m-family C of chains, and an m-family A of antichains, that

are orthogonal. Then we have |〈C〉|+ |〈A〉| = n+m2, so at least one of the

two families has total size at least d1
2(n+m2)e, as claimed.

Suppose that, for some m, there are m chains covering 1
2(n+m2) elements

of the poset P . Then the average length of these chains is at least

1

2

( n
m

+m
)

=
√
n+

(
√
n−m)2

2m
≥
√
n.

Corollary ?? guarantees us just one chain or antichain of size at least

d
√
ne; Theorem ?? tells us that either we can find one much larger than

that, or we can find a large collection of chains or antichains of average size

at least
√
n.

A somewhat weaker but more striking result is the following, stating that

we can cover more than half of the elements of P using either chains or

antichains, with the average size in each case being at least
√
n.

2.9 Further Applications of Greene-Kleitman

Lemma 2.9.1 Let k and m be positive integers. Let P be an n-element poset

of height at least k and width at least m, and let a, b, c and d be the integers

such that hm(P ) = am + b (0 ≤ b < m) and wk(P ) = ck + d (0 ≤ d < k).

Then

n ≤ max{ac+ b+ d, hm(P ) + wk(P )− k −m+ 1}.

Proof By the Greene-Kleitman Theorem, there is some r such that wk(P )+

hr(P ) = n + kr. Since k ≤ h(P ), we can take r ≥ 1. This requires a k-full

r-family of chains to intersect an r-full k-family of antichains in kr elements,

so in particular is at most both hr(P ) and wk(P ) < (c + 1)k; the second

inequality gives us that r ≤ c. We distinguish two cases.
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(1) If r ≥ m, then hr(P ) ≤ ar + b, since otherwise the longest m chains

from an r-family of chains of size hr(P ) will have more than am + b

members. Now we have kr ≤ hr(P ) ≤ ar + b, so k ≤ a. Now we have

n = wk(P ) + hr(P )− kr
≤ ck + d+ ar + b− kr
≤ ck + d+ b+ (a− k)c

= ac+ b+ d,

and we have the result in this case.

(2) Now suppose r < m. We have hr(P ) + wk(P ) = n+ kr, and also, since

the width of P is at least m, hm(P )− hr(P ) ≥ m− r. So

n ≤ hm(P ) + wk(P )− kr −m+ r ≤ hm(P ) + wk(P )− k −m+ 1,

since r ≥ 1, and we are done in this case too.

This result is best possible. Indeed, given a, b, c, d, the first bound

(ac+ b+ d) is strictly larger than the second exactly when (c−m)(a− k) >

(k − 1)(m− 1), which requires c > m and a > k (if the reverse inequalities

hold, one would need c or a equal to 0, contradicting the assumption that

P has height at least k and width at least m). If these inequalities hold,

take P to be the disjoint union of: b chains of height a + 1, c − b chains of

height a, and one chain of height d. This poset P has ac + b + d elements,

hm(P ) = am+ b, and wk(P ) = ck + d. As for the second bound, whatever

values of hm and wk are specified, let P ′ be the disjoint union of a chain of

height hm −m + 1 ≥ 1 and an antichain of size wk − k ≥ 0: then P ′ has

the required values of hm and wk, and just hm(P ′) + wk(P ′) −m − k + 1

elements.

The fact that the first bound in Lemma 2.9.1 only applies in cases with

c ≥ m and a ≥ k gives us the following more appealing but less precise

version.

Corollary 2.9.2 If P is an n-element poset of height at least k and width

at least m, then

n ≤ max
{hm(P )wk(P )

mk
, hm(P ) + wk(P )− k −m+ 1

}
.

The case k = m = 1 is just Corollary??. Since hm(P )/m and wk(P )/k

are non-increasing functions of m and k respectively, while hm(P )−m and

wk(P )− k are non-decreasing, we get the best results when the two bounds

are (almost) equal.
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We now apply the lemma to get our extension of Corollary ??, and hence

of the theorem of Erdős and Szekeres.

Theorem 2.9.3 Let s, t and p be integers with p ≤ min(b(s + 1)/2c, b(t +

1)/2c), and let P be any poset with n ≥ st + 2p − 1 elements. Then either

there are b(s+ 1)/2c chains covering at least b(s+ 1)/2ct+ p elements of P ,

or there are b(t+1)/2c antichains covering at least b(t+1)/2cs+p elements

of P .

Proof If P is a counterexample, then

hb(s+1)/2c ≤
⌊
s+ 1

2

⌋
t+ p− 1

wb(t+1)/2c ≤
⌊
t+ 1

2

⌋
s+ p− 1

Thus we can apply Lemma 2.9.1 with m = b(s + 1)/2c, k = b(t + 1)/2c,
a = t, c = s, b = d = p− 1. The result is trivial if P has height less than k

or width less than m, as then we can cover the entire poset with either m

chains or k antichains.

Now we have ac+ b+ d = st+ 2p− 2, and

hm(P ) + wk(P )− k −m+ 1 ≤ s+ 1

2
(t− 1) +

t+ 1

2
(s− 1) + 2(p− 1) + 1

= st+ 2p− 2.

Hence, by Lemma 2.9.1, we have n ≤ st+ 2p− 2, a contradiction.

The application to mononote subsequences of arbitrary sequences is ex-

actly as in Theorem ??. We state a slightly weaker, but perhaps more

appealing, form of the result.

Theorem 2.9.4 Let m and p be positive integers with p ≤ b(m + 1)/2c,
and let P be a poset with n ≥ m2 + 2p− 1 elements. Then either there are

b(m + 1)/2c chains covering at least b(m + 1)/2cm + p elements of P , or

there are b(m+1)/2c antichains covering at least b(m+1)/2cm+p elements

of P .

Proof By Theorem 2.8.1, there is an m ≤ m such that either there is an

m-family of chains of size at least 1
2(n + m2), or there is an m-family of

antichains of this size. Without loss of generality, we assume the former.
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For convenience, set r = b(m+ 1)/2c. We consider two cases.

(1) If m ≥ r, then it is enough to show that d1
2(n+m2)e ≥ mm+ p, since

then the largest r chains from the m-family will have total size at least

rm+ p, as required. But we have

n+m2

2
−mm− p ≥ m2 + 2p− 1 +m2 − 2mm− 2p

2

=
(m−m)2 − 1

2

≥ 0,

except when m = m, in which case the required inequality holds since

d1
2(n+m2)e ≥ m2 + p.

(2) If m < r, then adding an appropriate number of singleton chains to the

m-family gives us an r-family of chains of size at least d1
2(n+m2)e+r−m.

This is minimized when m = 1, when it is at least dm2

2 e + r + p − 1 ≥
rm+ p. (The final inequality can be checked separately in the cases of

m even and m odd.)

Theorem 2.9.4 is best possible in a number of senses: (a) if the entire

poset is the union of one chain and one antichain, each of size m2/2 + p

(this corresponds to the case m = 1), then we cannot find a family of r′ =

b(m+1)/2c+1 chains or antichains of total size r′m+p; (b) if n = m2+2p−2,

and P is made up of the union of p − 1 chains of height m + 1, m − p + 1

chains of height m, and one chain of height p− 1, then there is no union of

p chains, or of p antichains, of total size (m + 1)p. However, Theorem ??

still says more. One can also prove a version of Theorem 2.9.4 which is not

symmetric between chains and antichains; we leave this to the exercises.

Just as in the beginning of this chapter, if we have a sequence of n dis-

tinct real numbers, we can form a poset on the set [n] so that increasing

subsequences of the sequence correspond to chains, while decreasing subse-

quences correspond to antichains. Theorem 2.9.4 then gives us the following

extension of the theorem of Erdős and Szekeres.

Theorem 2.9.5 In any sequence of n = m2 + 1 distinct real numbers,

either there are b(m+1)/2c disjoint increasing subsequences of average length

greater than m, or there are b(m+ 1)/2c disjoint decreasing subsequences of

average length greater than m.
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2.10 Families of Pairwise Disjoint Chains and Antichains

The closing sections of this chapter are concerned with some quite recent

results which have dual statements for chains and antichains—much in the

same spirit as the theorems of Greene and Kleitman. Also, the natural

extremal posets showing that the results are best possible seem to have

much in common. Although no direct link between the two topics is known,

it would be quite interesting to determine if there is one.

In [99], Duffus and Sands initiated a study of the following problem: Fix

an integer k ≥ 2. Then find conditions that guarantee that a poset P has k

pairwise disjoint maximal antichains. Just by considering the set of maximal

points and the set of minimal points, they noted the following solution when

k = 2.

Proposition 2.10.1 A poset P has 2 pairwise disjoint maximal antichains

if and only if no point of P is incomparable with all other points of P .

But when k ≥ 3, the problem becomes more subtle. However, Duffus and

Sands we able to establish the following sufficient condition.

Theorem 2.10.2 (Duffus-Sands) Let n and k be integers with n ≥ k ≥ 3,

and let P be a finite poset. If n ≤ |C| ≤ n + (n − k)/(k − 2), for every

maximal chain C in P , then P has k pairwise disjoint maximal antichains.

For each pair n and k with n ≥ k ≥ 3, Duffus and Sands also constructed

a poset P (n, k) satisfying the following properties:

(i) If C is a maximal chain in P (n, k), then n ≤ |C| ≤ n + 1 + b(n −
k)/(k − 2)c.

(ii) P (n, k) does not have k pairwise disjoint maximal antichains.

These examples show that the inequality in Theorem 2.10.2 is best possi-

ble. We illustrate their construction with the diagram shown in Figure 2.10.

Here the specific parameters are n = 16 and k = 6, but the modifications

for other values of the two parameters should be clear.

In this same paper, Duffus and Sands also initiated the study of the dual

problem for pairwise disjoint families of chains. Again the result for k = 2

is complete, although the argument (one of our exercises at the end of the

chapter) is not entirely trivial.

Proposition 2.10.3 A poset P has 2 pairwise disjoint maximal chains if

and only if no point of P is comparable to all others.
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Fig. 2.8. Posets for Duffus-Sands Inequality

Duffus and Sands noted that the posets in their family {P (n, k) : n ≥ k ≥
3} have complements in which the role of comparability and incomparability

are exchanged † Accordingly, it was natural for them to ask whether the

dual version of their theorem might be true, noting that if the answer were

positive, then again the result would be best possible.

Howard and Trotter [99] answered their question in the affirmative by

proving the following result.

Theorem 2.10.4 (Howard-Trotter) Let n and k be integers with n ≥
k ≥ 3, and let P be a finite poset. If n ≤ |A| ≤ n+ (n− k)/(k− 2) for every

maximal antichain A in P , then P has k pairwise disjoint maximal chains.

Howard and Trotter actually proved a more technical and somewhat

stronger result and derived Theorem 2.10.4 as a corollary. They then showed

how a dual version of the technical result can be proved for families of pair-

wise disjoint maximal antichains, and as a consequence, provided an alter-

native proof of Theorem ??. While the original Duffus-Sands proof of this

† In Chapter 9.99, we will learn that the posets in this family are 2-dimensional.
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theorem remains of interest, we present here the approach taken by Howard

and Trotter.

2.10.1 Cutsets and Support Structures

Let P be a finite poset. In discussions concerning families of pairwise disjoint

maximal chains in P , we find it useful to apply well known concepts and

techniques from network flows. In particular, we will employ the following

basic proposition.

Proposition 2.10.5 The maximum number of pairwise disjoint maximal

chains in P equals the minimum cardinality of a set intersecting all maximal

chains in P .

In view of Proposition 2.10.5, the following notation and terminology

becomes natural. We will say that a chain C in a finite poset P is saturated

if either |C| = 1 or if |C| = r > 1 and C = {x1 < x2 < · · · < xr}, then xi is

covered by xi+1 for each i = 1, 2, . . . , r − 1.

A saturated chain in P whose least element is a minimal element of P will

be called an initial chain. Dually a saturated chain whose greatest element is

a maximal element of P will be called a terminal chain. A maximal chain is

always saturated and is both an initial chain and a terminal chain. Trivially,

for every point u in P , there is an initial chain whose greatest element is u,

and there is a terminal chain whose least element is u. The union of these

two chains is a maximal chain containing u.

Note also that whenever u < v in P , there is always a saturated chain C

with u the least element of C and v the greatest element of C. We say such

a chain is a linking chain for u and v.

Let P be a finite poset and let W be a subset of P that intersects all

maximal chains in P . We will refer to W as a cutset in P . Next, we will

develop some additional structural information concerning cutsets.

Now let s be a positive integer, and let W be an s-element cutset in P .

Then let r be the height of the subposet W , and let W = W1∪W2∪· · ·∪Wr

be the canonical partition of W into antichains, i.e., Wi consists of the points

in W whose height in W is i. Then for each i = 1, 2, . . . , r, let Ai be the

maximal elements of the set {x ∈ P : x 6> w, for all w ∈ Wi}. It is obvious

that Ai is a maximal antichain in P and that Wi ⊆ Ai. We refer to the

maximal antichains in the family {Ai : 1 ≤ i ≤ r} as flat antichains. Note

that Ai and Aj need not be disjoint when i 6= j. However, the following

important property does hold.
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Claim 1. If 1 ≤ i < j ≤ r, u ∈ Ai and v ∈ Aj , then u 6> v in P .

Proof. Suppose to the contrary that u > v in P . Since v is a maximal

element of the set {x ∈ P : x 6> w}, for all w ∈ Wj}, then there exists

some element w ∈ Wj with u > w in P . Since i < j, there is then some

element w′ ∈Wi with w > w′ in P . By transitivity, this implies that u > w′

in P with both u and w′ belonging to the antichain Ai. The contradiction

completes the proof of the claim.

Let u be an element of P . We say u is reachable if there is an initial chain

C having u as its greatest element so that C ∩W = ∅. Evidently, no point

of W is reachable. Also, all minimal elements of P that do not belong to W

are reachable. On the other hand, no maximal element of P is reachable, as

this would imply that there is a maximal chain in P that does not intersect

W .

For each i = 1, 2, . . . , r, let Ri denote the set of reachable points in the

antichain Ai, and let Ni = Ai −Wi −Ri. Elements of Ni are not reachable.

Here are two easy claims about reachable and non-reachable points. We

include the proofs among the exercises at the end of the Chapter.

Claim 2. N1 = Rr = ∅.

Claim 3. For each i = 1, 2, . . . , r − 1, Ri and Ni+1 are disjoint sets and

Ri ∪Ni+1 is an antichain in P .

We refer to the antichains in the family S = {Ri ∪Ni+1 : 1 ≤ i ≤ r − 1}
as slanted antichains. Note that slanted antichains need not be maximal.

Also, we refer to the family {Ai = Wi ∪ Ri ∪Ni : 1 ≤ i ≤ r} as the support

structure for the cutset W in P . Strictly speaking, the support structure of

a cutset W is determined entirely by W and P , but we find it useful to carry

along the additional information given by the family of flat antichains, and

the set of reachable elements.

Here is the technical result we are now positioned to prove.

Theorem 2.10.6 Let P be a poset, let s denote the maximum number of

pairwise disjoint maximal chains in P , and let W be an s-element cutset in

P . If the height of W is r, the width of P is t and every maximal antichain

in P has at least n elements, then

rn ≤ s+ t(r − 1) (2.1)
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Proof Let {Ai = Wi ∪ Ri ∪Ni : 1 ≤ i ≤ r} be the support structure of W .

Since |N1| = |Rr| = 0, it is immediate that

r∑
i=1

|Ai| = s+
r∑

i=1

|Ri|+ |Ni| = s+
r−1∑
i=1

|Ri ∪Ni+1|

Since |Ai| ≥ n for each i = 1, 2, . . . , r and |Ri ∪ Ni+1| ≤ t, for each i =

1, 2, . . . , r − 1, inequality 2.1 follows.

To see how our main Theorem now follows easily as a corollary to Theo-

rem ??, let n and k be integers with n ≥ k ≥ 3. Then let P be a finite poset

in which every maximal antichain has at least n elements, and suppose that

the width t of P is at most n+(n−k)/(k−2). If P does not have k pairwise

disjoint chains, then there is some positive integer s with s < k for which

there is an s-element cutset W in P . Let r denote the height of W . From

Theorem ??, we know that rn ≤ s + t(r − 1), and this inequality may be

rewritten as t ≥ n+ (n− s)/(r− 1). Since r ≤ s and s ≤ k− 1, this implies

t ≥ n+
n− s
r − 1

≥ n+
n− s
s− 1

≥ n+
n− k + 1

k − 2
.

This is a contradiction, since t ≤ n + (n − k)/(k − 2), and this remark

completes the proof.

2.10.2 The Dual Problem

It is worth noting that the approach used to prove Theorems ?? and ??

cannot be applied (at least not without modification) to the original prob-

lem studied by Duffus and Sands. The reason is that the dual version of

Proposition ?? is not valid. Specifically, it is not true that the maximum

number of pairwise disjoint antichains in a finite poset P equals the mini-

mum cardinality of a set intersecting all maximal antichains in P .

Here is a lemma whose proof is again deferred to the exercises.

Lemma 2.10.7 For any integer n ≥ 2 for which there exists a projective

plane of order n, there exists a poset Pn in which the maximum number of

pairwise disjoint antichains is 2, but the minimum cardinality of a set of

points intersecting all maximal antichains is 2n.

In spite of the apparent difficulties presented by Lemma ??, there is a

natural framework within which we can derive a dual version of Theorem ??

and then proceed to derive the Duffus-Sands result as a corollary.

Let P be a finite poset and let t denote the height of P . Then, for each
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i = 1, 2, . . . , t, let Li = max{x : hP (x) ≤ i}. We refer to {Li : 1 ≤ i ≤ t} as

the family of level antichains in P . It is straightforward to verify that each

level antichain is a maximal antichain. Furthermore, we have the following

important property:

Proposition 2.10.8 If 1 ≤ i < j ≤ r, u ∈ Li and v ∈ Lj, then u 6> v in P .

The following key result admits an easy elegant proof.

Theorem 2.10.9 The maximum number of pairwise disjoint level antichains

is equal to the minimum number of points in a set intersecting all of them.

Proof We show that that there is a partition {1, 2, . . . , t} = B1∪B2∪· · ·∪Bs,

so that for each p = 1, 2, . . . , s:

(i) Bp = [bp, cp] is a block of consecutive integers with bp = 1 + cp−1

when p > 1.

(ii) There is a point xp common to all antichains in {Li : i ∈ Bp}.
(iii) If cp < i ≤ t, then Li ∩ Lbp = ∅.

Once this partition has been constructed, we will then have a family {Lbp :

1 ≤ p ≤ s} of s pairwise disjoint maximal antichains and an s-element set

W = {xp : 1 ≤ p ≤ s} which intersects all level antichains.

The construction proceeds inductively Set c0 = 0. Suppose for some

p ≥ 1, we have a value of cp−1 and if p ≥ 2, the properties listed above hold

for the blocks B1, B2, . . . , Bp−1. If cp−1 < t, set bp = 1 + cp−1 and let cp
be the largest integer for which cp ≤ t and Lbp ∩ Lcp 6= ∅. Then choose xp
as an element from Lbp ∩ Lcp . It follows from Proposition 2.10.8 that xp
belongs to every antichain in {Li : i ∈ Bp}. Furthermore, if cp < i ≤ t, then

Li ∩ Lbp = ∅.

Now we can state and prove a dual version for Theorem ??

Theorem 2.10.10 Let P be a poset, let s denote the maximum number of

pairwise disjoint antichains in the family of level antichains in P , and let

W be an s-element set intersecting all level antichains in P . Let r be the

width of W and let C1, C2, . . . , Cr be maximal chains in P that cover W . If

every maximal chain in P has at least n elements, then:

rn ≤ s+ t(r − 1). (2.2)

Proof Let x ∈ W and let B = [b, c] be the set of consecutive integers from

{1, 2, . . . , t} so that x ∈ Lj if and only if j ∈ B. It follows that hP (x) = b.
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Furthermore, if x ∈ Ci, then there are no points in Ci that have height j

where b < j ≤ c. Since |Ci| ≥ n for each i = 1, 2, . . . , r and and we have

eliminated points at all heights from {1, 2, . . . , t}, except for the heights of

elements of W , we conclude that rn ≤ rt − t + s, which is equivalent to

inequality 2.2.

Note that Theorem 2.10.2 again follows immediately from this more tech-

nical result.

Exercises

2.1 What is the maximum value of h(P )w(P ), for an n-element poset

P?

2.2 Let G be a graph. Suggest an expression for the width of the inci-

dence poset of G. Prove your result.

2.3 LetD[n] = ([n], |), where | denotes strict divisibility. Find and justify

formulae for the height and width of D[n].

2.4 For each m ∈ N, give an example of a sequence of m2 distinct real

numbers with no monotonic subsequence of length m+ 1.

2.5 Suppose that P = (X,<) is a poset of size less than
(
m+2

2

)
. Show

that X can be covered by m sets, each of which is either a chain or

an antichain in P .

Show that this result is best possible: give an example of a poset

of size
(
m+2

2

)
that cannot be covered by m chains and antichains.

2.6 Give a proof of the defect form of Hall’s Marriage Theorem using

Dilworth’s Theorem.

2.7 Observe that all bipartite graphs are perfect. The Perfect Graph

Theorem then states that complements of bipartite graphs are per-

fect. Interpret this result.

2.8 Let P be a poset of width w ≥ 2. Show that, for every u < w, there

are u-antichains A and B such that |A ∨ B| > u. Give examples of

posets where

(a) for every pair of antichains A and B, |A ∨B| ≥ max(|A|, |B|),
(b) there is a pair (A,B) of 3-antichains with |A ∨B| = 2.

Do the same results hold for A ∧B as for A ∨B?

2.9 Let P = (X,<) be a poset, and take S = {X,U1, U2, . . . , Uk}, where

U1 ⊂ U2 ⊂ · · · ⊂ Uk is a nested sequence of up-sets. Show that S
has a simultaneous optimal chain partition.

2.10 Give an example of a poset P with two up-sets U1 and U2 such that

{U1, U2} does not have a simultaneous optimal chain partition.
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Fig. 2.9. Challenges for Greene-Kleitman

Give an example of a poset P = (X,<) and a subset Y of X such

that {X,Y } does not have a simultaneous optimal chain partition.

2.11 We show in Figure 11 the first three posets in an infinite sequence

{Ph : h ≥ 4}. Show that the conclusion of West’s Theorem 2.6.6

holds in the case of the Greene-Kleitman theorem. Then construct

complementary posets for Greene’s theorem.

2.12 Let U be an up-set and D a down-set in a poset P = (X,<). Show

that {X,U,D} has a simultaneous optimal chain partition. Show

further that, if S is a nested set of up-sets and T is a nested set of

down-sets, then S ∪ T has a simultaneous optimal chain partition.

2.13 Let P = (X,<) be a poset, and let B be the complete bipartite

graph with two copies of X as vertex classes. Describe how to assign

weights to the edges of B so that a maximum-weight matching corre-

sponds naturally (i.e., as in our second proof of Dilworth’s Theorem)

to a chain partition C minimizing ek(C).
2.14 Let P = (X,<) be a poset, with X = [n], and consider the vector

space Rn, with standard basis {e1, . . . , en}. For a subset Y of X,

let 〈Y 〉 be the subspace of Rn spanned by the vectors ei with i ∈ Y .

Define a down-map to be a linear map φ : Rn → Rn such that

φ(ei) ∈ 〈D(i)〉 for every i (i.e., φ(ei) is a linear combination of the

ej with j < i).

Show that the nullity n(φ) of a down-map φ is at least w(P ), and

use Dilworth’s Theorem to show that there is a down-map φ with

rank r(φ) at least n− w(P ), (and so n(φ) = w(P )).

Show further, by induction on k, that, for φ a down-map, n(φk) ≥
wk(P ) for k ∈ N. Finally, show that, for each k, there is a down-map

φ with n(φk) = wk(P ).
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2.15 A partition of the integer n is a non-increasing sequence n1 � n2 �
· · · � nt � 0 of positive integers summing to n. Two partitions

(n1, . . . , nt) and (m1, . . . ,ms) of the same integer n are conjugate if,

for each i = 1, . . . , s, the largest value of j such that nj ≥ i is exactly

mi. Show that this implies that, for each j, the largest value of i

such that mi ≥ j is exactly nj .

Show that, for any n-element poset P of height s and width t,

the sequences (w1 − w0, w2 − w1, . . . , ws − ws−1) and (h1 − h0, h2 −
h1, . . . , ht − ht−1) are conjugate partitions of n. (Here wi = wi(P )

and hi = hi(P ), for all i.)

2.16 Let k and m be positive integers, and let P be an n-element poset

of height at least k and width at least m. Set a, b, c and d to be the

integers such that hm(P ) = am+ b, 0 ≤ b < m, wk(P ) = ck+d, and

0 ≤ d < k. Show that

n ≤ max(ac+ b+ d, hm(P ) + wk(P )− k −m+ 1).

Show further that this inequality is best possible for all values of k,

m, hm and wk.

Hint: fix k, choose r such that (k, r) ∈ Γ(P ), and use an argument

similar to that in the proof of Theorem 2.9.4.

2.17 Let s, t and p be integers with p ≤ min(b(s+ 1)/2c, b(t+ 1)/2c), and

let P be any poset with n ≥ st+ 2p− 1 elements. Use the previous

exercise to show that there are either b(s+ 1)/2c chains covering at

least b(s+1)/2ct+p elements of P , or b(t+1)/2c antichains covering

at least b(t+ 1)/2cs+ p elements of P .

2.11 Notes and References

Theorem ?? was apparently first noted in print by Mirsky [?] in 1971, al-

though by then there were several proofs of Dilworth’s Theorem in the lit-

erature, and the result was undoubtedly known to many well before then.

Researchers in discrete mathematics are likely to come across references to

work of Erdős and Szekeres from 1935 in several different contexts: in that

year they published fundamental results in Ramsey theory (upper bounds on

Ramsey numbers) and in combinatorial geometry (existence of and estimates

for a function f(n) such that any f(n) points in general position in the plane

contain n that form a convex n-gon), besides the result appearing here as

Theorem ??. What is astonishing is that all of these results appear in one

8-page paper [?]: a classic!

Proofs of Dilworth’s Theorem are many and various. Besides the two
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proofs we give here, due to Perles [?] and to Fulkerson [?], and Dilworth’s

original [?], we mention a variant of Perles’ proof due to Tverberg [?], and a

proof published by Galvin [?] in 1994 (which he admits is likely to be a re-

discovery) that is essentially an inductive version of our proof of Lemma ??.

The Handbook of Combinatorics contains many excellent survey articles:

ones particularly relevant to material here are the chapters touching on

Matchings (by Pulleyblank [?]), on Perfect Graphs (by Toft [?]) and on

Network Flows (by Frank [?]).

The Greene-Kleitman Theorem appears in a paper [?] in JCT(A), in 1976.

The paper following that in the journal is by Greene [?], proving Corollary ??

and therefore, explicitly or implicitly, all of the other results in Section ??.

(The next paper in the journal is also by Greene and Kleitman, and the

one after has Kleitman as a co-author). The version of Theorem ?? based

on conjugate partitions of n (see Exercise 15) appears in another paper of

Greene [?] that, despite appearing in 1974, refers to the 1976 paper of Greene

and Kleitman.

The proof of the Greene-Kleitman Theorem we give here is due to Saks [?].

In that paper, he only proves that, for each k, there is some k-full family of

chains. The extension of his proof to give the full result appears in his PhD

thesis [?], and also in a paper of Perfect [?]. Exercise 14 is based on another

result of Saks [?]; what we term a down-map is more properly known as a

member of the strict incidence algebra of P .

The Greene-Kleitman Theorem and the related results have the flavor of

network flows, or more generally of the duality theory of linear programming,

and indeed there are ways to prove the results via these techniques. Frank [?]

(or see his Chapter [?] in the Handbook of Combinatorics) gives a direct proof

of Corollary 2.7.3, and hence of the Greene-Kleitman Theorem and all the

other consequences, by analysing the behavior of the Ford-Fulkerson min-

cost-flow algorithm on a suitably designed network, as the required amount

of flow is gradually increased. This is undoubtedly a more streamlined proof

than the one given here, but we chose to give a proof more firmly grounded in

the combinatorial theory of posets. A similar proof was given independently

by Fomin [?].

Various generalizations and extensions of the Greene-Kleitman theorem

are surveyed in a long article by West [?]. Although dating from 1985, this

contains references to almost all of the important material on this topic.
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2.12 Things Left to Do

1. I haven’t checked GRB’s argument for Greene’s theorem carefully, i.e.,

the part where he uses network flows to show that hw+1− hw ≤ hw − hw−1.

2. The references are incomplete and perhaps the attributions need to be

looked at again.

3. The historical comments needs to be updated in view of the edits and

additional material.

4. The exercises should be revisited.

5. A number of references from GRB’s portion are now undefined.
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