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4.1 Chapter Overview

Extremal set theory is the label broadly applied to combinatorial problems

for the subset lattice: the family of all subsets of a finite set, partially ordered

by inclusion. We include in this chapter a representative sampling of classic

results, including Sperner’s theorem and its application to the Littlewood-

Offord problem and the Erdős-Ko-Rado theorem. However, we quickly shift

the focus to more modern work on hamiltonian cycles and paths, partitions

into intervals and k-crossing families.

4.2 The Subset Lattice and Sperner’s Theorem

For a positive integer n, we let 2n denote the subset lattice consisting of all

subsets of [n] = {1, 2, . . . , n} ordered by inclusion. Of course, we may also

consider (2)n as the set of all 0–1 strings of length n with partial order

a = (a1, a2, . . . , an) ≤ b = (b1, b2, . . . , bn)

if and only if ai ≤ bi for each i = 1, 2, . . . , n. We illustrate this with a

diagram for 24 in Figure 4.2.

Some elementary properties of the poset 2n are:

(i) The height is n+ 1 and all maximal chains have exactly n+ 1 points.

(ii) The size of the poset 2t is 2n and the elements are partitioned into

ranks (antichains)A0, A1, . . . , An with |Ai| =
(
n
i

)
for each i = 0, 1, . . . , t.

(iii) The maximum size of a rank in the subset lattice occurs in the middle,

i.e. if s = bn/2c, then the largest binomial coefficient in the sequence(
n
0

)
,
(
n
1

)
,
(
n
2

)
, . . . ,

(
n
n

)
is
(
n
s

)
. Note that when n is odd, there are two

ranks of maximum size, but when n is even, there is only one.
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Fig. 4.1. The Subset Lattice 24

4.2.1 Sperner’s Theorem

For the width of the subset lattice, we have the following classic result due to

Sperner, although the proof we give here is due (independently) to Lubell,

Yamamoto and Meshalkin [99].

Theorem 4.2.1 (Sperner) For each n ≥ 1, the width of the subset lattice

2n is the maximum size of a rank, i.e.,

width(2n) =

(
t

bn2 c

)

Proof The width of the poset 2n is at least C(n, bn/2c) since the set of all

bn/2c-element subsets of [n] is an antichain. We now show that the width

of 2n is at most C(n, bn/2c).

Let w be the width of 2n and let F be an antichain of size w in this poset.

For each non-negative integer k, let Fk = {S ∈ F : |S| = k}. Note that for

each set S ∈ Fk, the number of maximal chains passing through S is exactly

n!(n− k)!. Since no maximal chain can pass through two distinct sets from

F , it follows that

w =

n∑
k=0

|Fk|k!(n− k)! ≤ n!
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And we conclude that

w(
n
bn/2c

) =

∑n
k=0 |Fk|(
n
bn/2c

)
≤
∑n

k=0 |Fk|(
n
k

)
=

∑t
k=0 |Fk|(k!(n− k)!

n!

≤ 1

So that w ≤
(

n
bn/2c

)
.

The reader should note that the proof as presented actually establishes a

somewhat stronger result, which we state here for emphasis. When F is an

antichain in 2n, and Fk = {S ∈ F : |S| = k}, then

n∑
k=0

|Fk(
n
k

) ≤ 1

4.2.2 Littlewood/Offord Problem for Reals

Here is a lovely little problem, and in the discussion, we go back and forth

between treating elements of 2n as 0–1 vectors of length n and as subsets of

[n].

We consider the following problem, first posed by Littlewood and Of-

ford [99]. Let x1, x2, . . . , xn be (not necessarily distinct) real numbers with

|xi| ≥ 1 for each i = 1, 2, . . . , n. What is the maximum size of a family F of

0–1 vectors from 2n satisfying the following property: For every pair S, T

from F ,

|
n∑
i=1

sixi −
n∑
i=1

tixi| < 1.

Erdős noted that Sperner’s theorem can quickly be applied to provide

the answer:
(

n
bn/2c

)
. For the lower bound, take all x′is to be 1. Then let

F consist of all 0–1 vectors of length n with exactly bn/2c 1’s. Then all

sums of the form
∑n

i=1 sixi are exactly equal to bn/2/rfloor. For the upper

bound, first note that we may assume that all xi > 0. for if xi < 0, simply

replace xi by −xi and then take the family F ′ = {S∆{i} : S ∈ F}.
Now observe that F must be an antichain, for if S, T ∈ F and S is a
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proper subset of T , then

n∑
i=1

tixi −
n∑
i=1

sixi ≥ 1

But now consider the same extremal problem but this time with x1,

x2, . . . , xn allowed to be complex numbers. Again setting all xi = 1, we

have the same lower bound, but at least as it has been formulated here,

the simple argument given by Erdős for the upper bound does not seem to

apply. To remedy this, we first find a different proof of Sperner’s theorem.

4.2.3 Symmetric Chain Partitions

A poset P is said to be ranked if all maximal chains have the same cardinal-

ity. When a poset is ranked, then there is a partition X = A1 ∪A2 ∪ . . . Ah
so that every maximal chain consists of exactly one point from each Ai. We

call this partition its partition into ranks.

A ranked poset is said to be sperner if the width of the poset is just

the maximum cardinality of a rank. So using this terminology, Sperner’s

theorem is just the assertion that the subset lattice is Sperner.

Let P be a ranked poset of height h and let A1, A2, . . . , Ah be the ranks

of P . A chain C in P is called a symmetric chain if there exists an integer s

so that C contains exactly one point from each rank As, As+1, . . . , Ah+1−s.

Intuitively, a symmetric chain is (1) balanced about the middle of the poset

and (2) dense in the sense that it is not possible to insert a point in between

two consecutive points in C.

The following proposition is self evident.

Proposition 4.2.2 If a ranked poset has a partition into symmetric chains,

then it is a Sperner poset. In fact, its width is just the size of the middle

rank(s).

So an alternative proof of Sperner’s theorem is provided by the following

result, due independently to Katona [99] and somebodyelse [99].

Theorem 4.2.3 For each n ≥ 1, the subset lattice 2n has a symmetric chain

partition.

In fact, we prove a much stronger result.

Theorem 4.2.4 If P and Q are ranked posets and each has a symmetric

chain partition, then P ×Q is ranked and has a symmetric chain partition.
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Note that Theorem ?? follows immediately from Theorem ?? since 2n is

just the cartesian product of n copies of the two-element chain 2, and this

has a trivial symmetric chain partition.

The argument for Theorem ?? begins with a technical lemma.

Lemma 4.2.5 Let m and n be positive integers. Then the cartesian product

m× n has a symmetric chain partition.

Proof The point set of m×n is just {(i, j) : 0 ≤ i < m, 0 ≤ j < n}. Without

loss of generality m ≤ n, so that the width of m × n is m. Then for each

i = 0, 1, . . . ,m− 1, let

Ci = {(i, 0), (i, 1), . . . , (i, n− 1− i), (i+ 1, n− 1− i), . . . , (m− 1, n− 1− i)}.

Then the family {C1, C2, . . . , Cm} is a symmetric chain partition of m× n.

We are now ready for the proof of Theorem ??. It is easy to see that

if P is ranked and has height h1 and Q is ranked and has height h2, then

P ×Q is ranked and has height h1+h2−1. Now suppose that P and Q have

symmetric chain partitions. Let C be a chain from the partition of P and

let D be a chain from the partition of Q. Then apply the preceding lemma

to obtain a partition of the product C × D. What results is a saturated

partition of P ×Q.

4.2.4 Littlewood/Offord Problem for Complex Numbers

Let n be a positive integer and let t =
(

n
bn/2c

)
. We pause to take a closer look

at the details of a symmetric chain partition of 2n. Regardless of how such

a partition is constructed, it always results in a partition P of the family of

all subsets of [n] so that:

(i) There are t families in P.

(ii) For each i, let ti count the number of families of P which contain

exactly i sets. Then tn+1 = 1, tn−1 = n − 1, tn−3 =
(
n
3

)
− t1 − t2,

etc. In particular, the value of ti depends only on n and not on the

symmetric chain partition.

(iii) Each family F in P is a symmetric chain.

Accordingly, we say that a partition P of the family of all subsets is sym-

metric when it satisfies the first two properties listed above. It is important

to note that we do not require that a symmetric partition also satisfy the
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third property. In particular, we do not require the sets form a chain, and

in fact, we make no assumption about the sizes of the sets in the family.

Example 4.2.6 Here is symmetric partition of 24.

F1 = {{4}, {1, 2}, {1, 2, 3}, {1, 2, 4}, {1, 3, 4}}
F2 = {∅, {1, 3}, {1, 4}}
F3 = {{2}, {3}, {1, 2, 3, 4}}
F4 = {{1}, {2, 3}, {2, 3, 4}}
F5 = {{2, 4}}
F6 = {{3, 4}}

Now fix a vector X = (x1, x2, . . . , xn) of complex numbers. We say that a

family S of sets (0–1 vectors) from 2n is sparse if

|
n∑
i=1

sixi −
n∑
i=1

tixi| ≥ 1

for every distinct pair S = (s1, s2, . . . , sn) and T = (t1, t2, . . . , tn) from

S. With this background in place, we can now present the solution of the

Littlewood-Offord problem in the complex number system. The result is

due independently to Kleitman [99] and Katona [99].

Lemma 4.2.7 There exists a symmetric partition of 2 into sparse families.

Proof We proceed by induction on n, observing first that the result hold

trivially for n = 1. Now suppose it holds when n ≤ m and consider the

case that n = m + 1. First take a symmetric partition P of 2m into sparse

families for the vector (x1, x2, . . . , xm). For each family F in P, we will form

two new families in Q by identifying a particular set S from F and then

taking: F1 = F ∪ {S ∪ {xm+1} and F2 = {T ∪ {xm+1} : T ∈ F , T 6= S}.
Note that regardless of how S is chosen, the family F2 is sparse, since it is a

translate of a sparse family. The challenge is to choose S so that F1 is also

sparse.

But this choice is easy. For each set S = (s1, s2, . . . , sn) ∈ F , we consider

of the complex number
∑n

i=1 six1 on xm+1. choose xi so that this projection

is maximum. We illustrate this choice in Figure 4.2.4 where the correct set

is S2.

STUFF NEEDED HERE!!
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Fig. 4.2. Littlewood-Offord for Complex Numbers

4.3 The Erdős-Ko-Rado Theorem

Sperner’s theorem tells us the width of the subset lattice. It is interesting to

answer how large an antichain F in the subset lattice can be if F is required

to satisfy additional properties. The argument given for Sperner’s theorem

also works in the following case.

Proposition 4.3.1 Let n and r be positive integerrs with 2r ≤ n. Then let

F be an antichain in F with |A| ≤ r for every A ∈ F . Then |F| ≤ r.

But here is a twist that requires a new idea. The result is known as the

Erdős-Ko-Rado theorem, but the proof we present is due to Katona [?].

Theorem 4.3.2 (Erdős-Ko-Rado) Let n and r be positive integerrs with

2r ≤ n. Then let F be a an antichain in F with |A| ≤ r for every A ∈ F .
If A ∩B 6= ∅ for every A,B ∈ F , then |F| ≤ C(n, r).

Proof Consider all possible arrangements of the integers in [n] at n equally

spaced points around a circle. There are n! arrangements, one for each

permutation σ of [n]. Now let B denote the set of all pairs (A, σ) where A

is a set from F and the elements of A occur as a block (in the cyclic sense)

in the arrangment σ. If |A| = s ≤ r, then there are ns!(n − s)! pairs in B
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having A as the first coordinate. On the other hand, for each arrangement

σ, there are clearly at most r pairs from B having σ as second coordinate.

If there are fs sets in F having cardinality s, so that |F| =
∑r

s=1 fs, then

r∑
i=1

fsns!(n− s)! ≤ rn!

so that
r∑
i=1

s

r

(s− 1)!(n− s)!
(n− 1)!

≤ 1.

This show that |F| ≤ C(n− 1, r − 1).

The inequality in Theorem ?? is clearly best possible, since we may take

F as the family of all r-element subsets of [n] which contain the element 1.

Also note that in the spirit of the LYM approach to Sperner’s theorem, the

proof actually yields a somewhat stronger result.

4.4 Antichains with Limits on Crossings

In this section, we consider an intriguing extremal problem posed to us by

Piotr Micek, and in the intervening months, a number of researchers have

made contributions to our understanding of the problem. However, the

major result to date is Theorem ?? and this is due solely to B. Walczyk.

For a positive integer w, the elements of Zw are just vectors of the form

x = (x1, x2, . . . , xw) with each xi an integer. Considering Zw as a cartesian

product of w copies of Z, the natural order on Zw is defined by setting

x ≤ y when xi ≤ yi in Z for each i = 1, 2, . . . , w. When considering a When

considering a sequence x(1), x(2), . . . , x(m) of vectors from Zw, the notation

xα(i) will mean coordinate α of vector x(i).

A set A of elements in Z is an antichain if and only for each distinct

pair x, y ∈ A, there are coordinates i and j for which xi ≥ 1 + yi and

yj ≥ 1 + xj . More generally, when k is a positive integer, we say that x and

y are k-crossing when there are coordinates i and j so that xi ≥ k + yi and

yj ≥ k + xj . With this terminology, we have the following natural extremal

problem.

For positive integers k and w, what is the maximum size f(k,w) of an

antichainA in Zw so that there is no k-crossing pair inA. Trivially, f(k,w) =

1 if either k = 1 or w = 1 so we are really interested in f(k,w) when both

k and w are at least 2.

Proposition 4.4.1 f(k, 2) = k for all k ≥ 1.
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Proof For the lower bound, consider the vectors {(i, k−1−i) : 0 ≤ i ≤ k−1}.
For the lower bound, let A be an antichain in Z2 which does not contain a

k-crossing pair. Then for each distinct pair x, y ∈ A, x1 6= y1. Furthermore,

if x1 < y1, then x2 > y1. It follows then if |A| ≥ k + 1, then A has a

k-crossing pair.

For arbitrary values of w, we have the following two basic results.

Proposition 4.4.2 For all k,w ≥ 1, f(k,w) ≥ kw−1.

Proof The bound holds when w = 1, so we assume w ≥ 2. Now let A be

the following set:

A = {(x1, x2, . . . , xw) : 0 ≤ xi ≤ k−1for all i−1, 2, . . . , w−1;x1+x2+· · ·+xw = 0}

Clearly |A| = kw−1 and A has no k-crossing pair.

Proposition 4.4.3 For all k,w ≥ 1, f(k,w) ≤ kw.

Proof Let A be an antichain in Zw which does not contain a k-crossing pair.

For each vector x ∈ A, let σ(x) be the vector from kw so that coordinate i of

σ(x) is j when xi ∼= j mod k. If σ(x) = σ(y) for distinct elements x and y

of A and we choose coordinates i and j for which xi > yi and yj > xj , then

these two coordinates witness that x and y are k-crossing. We conclude that

σ is an injection. This completes the proof.

In the exercises, we describe two alternate constructions of antichains in

Zw which also establish the lower bound f(k,w) ≥ kw−1. Armed with not

much more than the facts that (1) the lower bound is tight when w = 1

and w = 2 holds, and (2) we have not been able to build bigger antichains

when w ≥ 3, we conjecture that f(k,w) = kw−1 for all k,w ≥ 1. To lend

credibility to the conjecture, we settle the case w = 3. As a warm up, the

reader is encouraged to put the monograph down and take a few minutes

time to show that f(2, 3) = 4. Then come back to reading.

Theorem 4.4.4 (Walczyk) The maximum size f(k, 3) of an antichain in

Z3 which does not contain a k-crossing pair is k2.

Proof As noted previously, we assume k ≥ 2. Let A be an antichain in

Z3 which does not contain a k-crossing pair, with |A| = f(k, 3). We will


