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7.1 Introduction

As we saw in the previous chapter, the family E(P) of all linear extensions

of the finite poset P = (X,P ) can be thought of as a probability space, with

each linear extension given the same probability, namely 1/e(P). One can be

interested in various events in this probability space: the most fundamental

being the events of the form x ≺ y, for elements x, y ∈ X. If x and y

are comparable, this event will have probability 0 or 1, but if they are

incomparable then Pr(x ≺ y) will lie strictly between 0 and 1; this is just

the fact, from Section 9.99, that there is at least one linear extension of P

with x below y, and one with y below x.

Given various events in a probability space (i.e., subsets of the sample

space), it is common to ask for circumstances under which a pair of events

is non-negatively correlated, i.e., the occurrence of one of the events makes

the other no less likely. Equivalently, events A and B in a probability space

are non-negatively correlated if

Pr(A) Pr(B) ≤ Pr(A ∩B).

If the inequality above is strict, then A and B are positively correlated. The

definitions of negative and non-positive correlation are analogous.

For instance, it must surely appear intuitively obvious that, for any triple

of elements x, y, z ∈ X, the events x ≺ y and x ≺ z are non-negatively

correlated. What this says is that, if we have some information about the

underlying linear order on a collection of elements, in the form of a partial

order P on X, and we are then given the extra information that element x

is below element y, this cannot make it less likely that x is below another

element z. Perhaps surprisingly, this “obvious” fact is not so easy to prove,

1



2 Correlation

and it spent some time as the “xyz Conjecture” before becoming the “xyz

Inequality” when it was proved by Shepp in 1982.

A number of other likely-looking statements about correlation between

events in this probability space were proved at around the same time, all

using much the same basic techniques, with different ingenious twists. We

start this chapter with a look at the main tool, the Ahlswede-Daykin Four

Functions Theorem, and then we shall see how it can be used. At the end

of the chapter, we turn our attention to a geometric result, the Alexandrov-

Fenchel Inequalities, that can be used to prove a slightly different type of

result, namely that certain sequences are log-concave.

7.2 The Ahlswede-Daykin Four Functions Theorem

In a 1966 paper [99], Kleitman proved that, if D is a down-set and U an

up-set in 2n, then

|D| |U | ≥ 2n|D ∩ U |. (7.1)

This is a correlation inequality; if one regards 2n as a probability space, with

all elements equally likely, then it says that

Pr(x ∈ D) Pr(x ∈ U) ≥ Pr(x ∈ D&x ∈ U),

in other words, the events “x ∈ D” and “x ∈ U” are non-positively corre-

lated.

Putting V = 2n \D in Kleitman’s theorem yields immediately that

|U | |V | ≤ 2n|U ∩ V | (7.2)

for any two up-sets U and V in 2n. This says that the events “x ∈ U”

and “x ∈ V ” are non-negatively correlated. Indeed, both inequalities are

equivalent to: for any up-sets U and V in 2n,

|U ∩ V | |V ∩ U | ≤ |U ∩ V ||U ∩ V |. (7.3)

See Exercise 1.

In 1971, Fortuin, Kasteleyn and Ginibre [99], while studying problems

in statistical physics, proved the following powerful extension of Kleitman’s

theorem.

A function µ from a lattice L to R+ is said to be log-supermodular if

µ(a)µ(b) ≤ µ(a ∨ b)µ(a ∧ b) for every a, b ∈ L.

Theorem 7.2.1 (FKG Inequality) Let L be a distributive lattice, and
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suppose that f , g and µ are functions from L to R+ such that f and g are

non-decreasing and µ is log-supermodular. Then(∑
a∈L

f(a)µ(a)

)(∑
a∈L

g(a)µ(a)

)
≤

(∑
a∈L

f(a)g(a)µ(a)

)(∑
a∈L

µ(a)

)
.

The FKG Inequality is again a thinly disguised correlation inequality: if

µ is normalized so that it becomes a probability measure, Theorem 7.2.1

says simply that (Ef)(Eg) ≤ E(fg). In many, but not all, applications, one

takes µ to be constant. If f and g are the indicator functions of up-sets U

and V , and µ = 1, then the FKG Inequality gives the following result.

Corollary 7.2.2 For any two up-sets U , V in a distributive lattice L,

|U | |V | ≤ |U ∩ V | |L|.

This result says that any two up-sets in a distributive lattice are non-

negatively correlated; as before, one can deduce that any two down-sets

are non-negatively correlated, and that an up-set and a down-set are non-

positively correlated. For L = 2n, Corollary 7.2.2 is of course just (7.2),

equivalent to Kleitman’s result.

The FKG Inequality is a beautiful result, and for many an application

it is all one really needs. Indeed, most of our correlation results use only

Corollary 7.2.2. However, in 1978 Ahlswede and Daykin gave a result which

includes this and many other inequalities, and whose proof is at least as

simple as any of the earlier ones. The statement is a little more involved,

and it is perhaps something of a surprise that the full power of the theorem

is sometimes needed to derive important results.

For S any finite set, f : S → R+ a function, and A ⊆ S, we adopt

the usual and useful convention that f(A) denotes
∑

a∈A f(a). Also, for

A and B subsets of a lattice L, set A ∨ B = {a ∨ b : a ∈ A, b ∈ B} and

A ∧ B = {a ∧ b : a ∈ A, b ∈ B}. If A and B are up-sets, then A ∨ B is just

A ∩B (Exercise 7).

Theorem 7.2.3 (Ahlswede-Daykin Four Functions Theorem) Let L

be a finite distributive lattice, and let α, β, γ and δ be four functions from

L to R+ such that α(a)β(b) ≤ γ(a ∨ b)δ(a ∧ b) for all a, b ∈ L. Then, for

any subsets A,B ⊆ L,

α(A)β(B) ≤ γ(A ∨B)δ(A ∧B).

Let us see how we can use the Four Functions Theorem to prove the FKG

Inequality. Given non-decreasing functions f and g, and a log-supermodular
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function µ, all from a distributive lattice L to the non-negative reals, set A =

B = L, α = fµ, β = gµ, γ = fgµ and δ = µ. Clearly A ∨ B = A ∧ B = L,

and so the conclusion of the Four Functions Theorem is exactly what we

want, so it remains to check that

f(a)µ(a)g(b)µ(b) ≤ f(a ∨ b)g(a ∨ b)µ(a ∨ b)µ(a ∧ b),

but this is immediate from the assumptions on f , g and µ.

If α, β, γ and δ are all identically 1, the Four Functions Theorem gives

us the following corollary, extending Kleitman’s Theorem.

Corollary 7.2.4 For A and B subsets of a distributive lattice L,

|A| |B| ≤ |A ∨B| |A ∧B|.

Corollary 7.2.4 had earlier been proved by Daykin [99], who also observed

that the inequality fails in any non-distributive lattice: see Exercise 6. If

A and B are up-sets, then we obtain a slightly strengthened version of

Corollary 7.2.2.

We shan’t prove the Four Functions Theorem, but let us at least indicate

how the proof goes. Firstly, we observe that it is enough to prove the

theorem for A = B = L. Indeed, if we have the result in this case, and we

are given sets A,B ⊆ L, and four functions α, β, γ, δ satisfying α(a)β(b) ≤
γ(a ∨ b)δ(a ∧ b), then set:

α′(a) = α(a)χ(a ∈ A),

β′(a) = β(a)χ(a ∈ B),

γ′(a) = γ(a)χ(a ∈ A ∨B),

δ′(a) = δ(a)χ(a ∈ A ∧B).

These functions satisfy α′(a)β′(b) ≤ γ′(a ∨ b)δ′(a ∧ b), and applying our

special case of the Four Functions Theorem gives us α(A)β(B) ≤ γ(A ∨
B)δ(A ∧ B), as we require. Furthermore, since every distributive lattice is

isomorphic to a sublattice of 2n for some n (by Theorem 9.99), the same

technique shows that it is enough to prove the result for L = 2n. Now

one uses induction on n: the case n = 1 requires a little detailed analysis,

and this same analysis also forms the heart of the induction step. See the

original paper of Ahlswede and Daykin [99] or, for instance, Bollobás [99]

for details.
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7.3 Order-preserving Maps

We now begin to apply the results of the previous section to problems of

interest to us. Our line of attack will be to apply the Four Functions Theo-

rem (perhaps not in full generality). For this we need to get our hands on a

distributive lattice L connected to the problem, such that summing various

functions over L will produce the quantities we are interested in.

For instance, we want to prove the xyz inequality described in Section 7.1.

It would be ideal if we could find a distributive lattice whose elements are ex-

actly the linear extensions of our poset P, where the set of linear extensions

with x below y forms an up-set, as does the set with x below z. Sadly, this

does not appear to be possible for an arbitrary poset P. However, we can

do almost as well if, instead of working with linear extensions directly, we

work with order-preserving maps from P to [k], where k is a (large) positive

integer. The idea is that the set of order-preserving maps can be made into

a distributive lattice in various useful ways, and that any correlation results

we obtain in the probability space of order-preserving maps can be carried

over into the space of linear extensions. This approach, and the results and

proofs derived using it, are all due to Shepp [99].

For P = (X,P ) a finite poset and k ∈ N, let Mk(P) denote the set of

all order-preserving maps from P to [k], i.e., the set of functions ω : X →
{1, . . . , k} such that ω(x) � ω(y) whenever (x, y) ∈ P . We make Mk(P)

into a probability space by declaring all of its elements to be equally likely,

and denote the probability measure in this space by Prk. Note that, if Q is

an extension of P, then Mk(Q) ⊆Mk(P). Also, Mk(P) =
⋃

R∈E(P)Mk(R);

however, this is not a disjoint union – indeed, all the constant functions

ω are in all the Mk(R). If A is any subset of E(P) (i.e., any event in the

probability space E(P)), set Ak =
⋃

R∈AMk(R), an event in the probability

space Mk(P). The basic lemma that drives the approach is as follows.

Lemma 7.3.1 For any finite poset P = (X,P ), and any subset A of E(P),

Prk(Ak)→
|A|
e(P)

as k →∞.

Proof Set n = |X|, as usual. Let bk(P) be the probability, in Mk(P), that

there is some pair of elements x, y with ω(x) = ω(y). It is intuitively clear,

and easy to check (see Exercise 11), that bk(P)→ 0 as k →∞.

Now, among those order-preserving maps ω ∈ Mk(P) for which all the

images ω(x) are distinct, there are exactly
(
k
n

)
in Mk(R), for each linear
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extension R of P. Thus, for any event A ⊆ E(P), the probability of Ak,

conditioned on the event that all the ω(x) are distinct, is exactly |A|/e(P).

Thus we have

(1− bk(P))
|A|
e(P)

≤ Prk(Ak) ≤ (1− bk(P))
|A|
e(P)

+ bk(P),

and the result follows.

We immediately obtain the following corollary.

Corollary 7.3.2 Let P = (X,P ) be a finite poset, and let A and B be

subsets of E(P). Suppose that, for sufficiently large k, the events Ak and Bk
are non-negatively correlated in Mk(P). Then A and B are non-negatively

correlated in E(P).

We now want to impose a distributive lattice structure on Mk(P) such

that events of interest to us become up-sets or down-sets. One obvious

possibility is to define, for ω, ν ∈Mk(P), the meet ω ∧ ν and join ω ∨ ν by

(ω ∧ ν)(x) = min(ω(x), ν(x)),

(ω ∨ ν)(x) = max(ω(x), ν(x)).

It is easy to check that this does define a distributive lattice, but unfortu-

nately no event of the form ω(x) ≺ ω(y) is an up-set or down-set in the

lattice. One can apply any of the correlation inequalities from Section 7.2

to show that, for instance, for any two elements x, y ∈ X, ω(x) and ω(y)

are non-negatively correlated random variables. But this is not what we are

looking for.

However, our first correlation result for partial orders, proved by Shepp [99],

uses a lattice structure on Mk(P) that is only slightly more complicated.

For a finite poset P = (X,P ) and any subset S of X ×X, let GS denote

the event, in E(P), that x ≺ y for every (x, y) ∈ S. Similarly, let Gk,S
denote the event, in Mk(P), that ω(x) � ω(y) whenever (x, y) ∈ S.

Theorem 7.3.3 Let P = (X,P ) be a finite poset such that X is the disjoint

union of Y and Z, with Y |Z, and let S and T be two subsets of Y × Z.

For any k ∈ N, the events Gk,S and Gk,T are non-negatively correlated in

Mk(P), and the events GS and GT are non-negatively correlated in E(P).

In particular, Theorem 7.3.3 says that, if Y and Z are as above, with

y1, y2 ∈ Y and z1, z2 ∈ Z, then the events y1 ≺ z1 and y2 ≺ z2 are non-

negatively correlated. One way to look at this is to think of Y and Z as

two “teams”. Some information may be known in advance about the relative
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ranking of players within each team, but nothing else. Now, the information

that player y1 on team Y is ranked below player z1 on team Z makes it no

less likely that y2 is ranked below z2.

Proof By Corollary 7.3.2, it is enough to prove the result for Mk(P). We

give Mk(P) the following lattice structure. For ω, ν ∈Mk(P), set:

(ω ∧ ν)(y) = min(ω(y), ν(y)) for y ∈ Y,
(ω ∧ ν)(z) = max(ω(z), ν(z)) for z ∈ Z,
(ω ∨ ν)(y) = max(ω(y), ν(y)) for y ∈ Y,
(ω ∨ ν)(z) = min(ω(z), ν(z)) for z ∈ Z.

So, in the underlying partial order, ω ≤ ν if and only if ω(y) � ν(y) for all

y ∈ Y and ω(z) � ν(z) for all z ∈ Z.

To see that this defines a distributive lattice, we note first that it is a

subposet of the poset of all functions from X to [k], with the partial or-

der given above, and this is a cartesian product of chains and so is a dis-

tributive lattice. Thus all we need to check is that Mk(P) is closed un-

der the operations ∧ and ∨ defined above. Certainly, for ω, ν ∈ Mk(P),

ω ∧ ν and ω ∨ ν are maps from X to [k]. Now, if y1 < y2, then ω(y1) �
ω(y2) and ν(y1) � ν(y2), so min(ω(y1), ν(y1)) � min(ω(y2), ν(y2)) and

max(ω(y1), ν(y1)) � max(ω(y2), ν(y2)), so ω ∧ ν and ω ∨ ν preserve the

order on Y , and, by symmetry, also the order on Z. Since Y |Z in P, we are

done.

Now observe that, in this distributive lattice, the events Gk,S and Gk,T
are down-sets. Thus, by (for instance) Corollary 7.2.2, these two events are

non-negatively correlated, as required.

Theorem 7.3.3 can obviously be extended to cover pairs of more complex

events, each a disjunction of events of the form GS , with S ⊆ Y × Z.

Theorem 7.3.3 is not particularly impressive at first sight: one is tempted

to think that there should be a short direct proof, without needing to resort

to “trickery”. However, we know of no such proof. In fact, the result is sur-

prisingly useful. Here, for instance, is a consequence, due to Fishburn [99],

which we shall use later.

Theorem 7.3.4 Let U and V be up-sets in a finite poset P = (X,P ). Then

e(PU )e(PV )

e(PU∩V )e(PU∪V )
≤ |U |! |V |!
|U ∩ V |! |U ∪ V |!

≤ 1.

Note that, for instance, e(PU )/|U |! is the probability, in the space of all

linear orders on U ∪ V , of GPU
. As GPU∪V

= GPU
∩ GPV

—every pair of
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Fig. 7.1. The various sets in Theorem 7.3.4

elements comparable in PU∪V is contained in either U or V , as U and V

are up-sets—Theorem 7.3.4 says exactly that the events GPU
and GPV

are

non-negatively correlated in the space of all linear orders on X.

Proof Let Z = U ∩ V and Y = U4V . Note that, in P, (U \ V )|(V \ U).

The basic idea is that PU∪V can be decomposed into independent partial

orders on Z, U \V and V \U , together with the two sets S = P ∩[(U \V )×Z]

and T = P ∩ [(V \ U) × Z]. The theorem of Shepp then tells us that GS
and GT are non-negatively correlated, which turns out to be exactly what

we need. See Figure 7.1.

More formally, we define a partial order Q = (W,Q) onW = U∪V = Y ∪Z
to be the disjoint union of PZ and PY , so Q = P∩[(Z × Z) ∪ (Y × Y )]. Now

we apply Shepp’s Theorem 7.3.3 to the poset Q, with partition W = Y ∪Z,

and the events GS and GT , obtaining that Pr(GS) Pr(GT ) ≤ Pr(GS &GT ),

in E(Q).

In calculating Pr(GS), note that the elements of V \ U can be ignored,

and that QU ∪ S = PU , so that

Pr(GS) =
e(PU )

e(QU )
=

e(PU )

e(PU∩V )e(PU\V )
( |U |
|U∩V |

) .
Similarly

Pr(GT ) =
e(PV )

e(QV )
=

e(PV )

e(PU∩V )e(PV \U )
( |V |
|U∩V |

) ,
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and

Pr(GS &GT ) =
e(PU∪V )

e(QU∪V )

=
e(PU∪V )

e(PU∩V )e(PU\V )e(PV \U )
( |U∪V |
|U∩V |,|U\V |,|V \U |

) .
Rearranging terms now gives the required inequality.

To prove the xyz inequality, Shepp [99] required another, again slightly

more complicated, lattice structure on Mk(P).

Theorem 7.3.5 (xyz Inequality) Let x, y and z be any three distinct

elements of a finite poset P = (X,P ). Then the events ω(x) � ω(y) and

ω(x) � ω(z) are non-negatively correlated in Mk(P). Also, the events x ≺ y
and x ≺ z are non-negatively correlated in E(P).

Proof Again, Corollary 7.3.2 tells us that we need only prove the result for

Mk(P).

For convenience, we label the elements of X as x = x1, y = x2, z =

x3, x4, . . . , xn. Now consider the function Φ from Mk(P) to Hk = [−k,−1]×
[−k + 1, k − 1]× [−k + 1, k − 1]× · · · × [−k + 1, k − 1] given by:

Φ(ω) =
(
− ω(x1), ω(x2)− ω(x1), ω(x3)− ω(x1), . . . , ω(xn)− ω(x1)

)
.

The map Φ is clearly an injection; we claim that Φ(Mk(P)) is a sublattice

of the distributive lattice Hk. This allows us to pass the distributive lattice

structure on to Mk(P). Clearly then the events ω(xj) − ω(x1) � 0 are all

up-sets in this lattice, so non-negatively correlated by Corollary 7.2.2. For

j = 2, 3, the events in question are exactly the events ω(x) � ω(y) and

ω(x) � ω(z).

It remains to verify that Φ(Mk(P)) is a sublattice of Hk. Suppose then

that ω and ν are two elements of Mk(P), and consider Φ(ω) ∧ Φ(ν). The

first co-ordinate of this vector is −max(ω(x1), ν(x1)), and for j > 1 the jth

co-ordinate is min(ω(xj) − ω(x1), ν(xj) − ν(x1)). Accordingly, we define µ

by µ(x1) = max(ω(x1), ν(x1)) and, for j > 1,

µ(xj) = µ(x1) + min(ω(xj)− ω(x1), ν(xj)− ν(x1)).

It is easy to check that

min(ω(xj), ν(xj)) ≤ µ(xj) ≤ max(ω(xj), µ(xj)),

so µ(xj) ∈ [k]; we need also to check that µ is order-preserving. If xj < x`
in P, with j, ` > 1, then ω(xj)−ω(x1) � ω(x`)−ω(x1) and ν(xj)− ν(x1) �
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ν(x`)− ν(x1), so the same also holds for µ, and µ(xj) � µ(x`). Also, if xj is

less than (greater than) x1, then both ω(xj)− ω(x1) and ν(xj)− ν(x1) are

non-positive (non-negative), and hence so is µ(xj)−µ(x1). Thus µ is indeed

in Mk(P), and so Φ(Mk(P)) is closed under meets. In exactly the same way,

one verifies that Φ(Mk(P)) is closed under joins, so it is a sublattice of Hk,
as claimed.

This completes the proof.

Again, one can prove slightly more general correlation inequalities by

working in the same lattice; if x is a fixed element of a poset, and A and B

are any events made up from basic events of the form x ≺ xj by conjunctions

and disjunctions, then A and B are non-negatively correlated.

In the next section, we shall give another proof of the xyz Inequality,

showing also that, except in trivial cases, the inequality holds strictly.

7.4 Linear Extensions

In the previous section, we looked at ways of proving correlation results in

E(P) via the space Mk(P) of order-preserving maps; in this section, we

proceed more directly.

We begin with a result which can be viewed as a companion to Theo-

rem 7.3.3. Again, suppose we have a scenario with two “teams” Y and Z.

We are interested in conditions implying that events yi ≺ zi (yi ∈ Y , zi ∈ Z)

are non-negatively correlated in E(P). Roughly speaking, we need our con-

dition to tie pairs of elements from the same team more closely than pairs

from opposite teams. In Theorem 7.3.3, this was accomplished by assuming

that we had no information about rankings between the teams. The other

extreme, where we have complete information about the ranking inside each

team, is what we consider now. The following result was first proved by

Graham, Yao and Yao [99]; the proof here is due to Shepp [99].

Theorem 7.4.1 Suppose that P = (X,P ) is a poset of width 2, with a

chain-partition (Y, Z), and let S and T be subsets of Y × Z. Then GS and

GT are non-negatively correlated in E(P).

Proof We label the elements of Y so that y1 < y2 < · · · < y` and the elements

of Z so that z1 < z2 < · · · < zm. We would like to put a distributive lattice

structure on E(P) so that events of the form yi ≺ zj are down-sets. Since all

we need to do to determine a linear extension of P is specify which events

of this form occur in the particular linear extension, a natural possibility is

to look at the subset lattice P(K), where K = {(y, z) : y ∈ Y, z ∈ Z, y|z}.
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The set E(P) can be thought of as a subset of P(K); we claim that it is a

sublattice.

Indeed, which subsets J of K correspond to linear extensions of P? A

necessary condition is that, for each yi ∈ Y , the set {zj : (yi, zj) ∈ J} is

an up-set in the chain Z and, for each zj ∈ Z, the set {yi : (yi, zj) ∈ J} is

a down-set in the chain Y . This condition is also sufficient since it implies

transitivity in P ∪ J ∪ {(z, y) : (y, z) /∈ J}.
Now, given any two subsets J1 and J2 of K satisfying the above condition,

the union J1 ∪ J2 and intersection J1 ∩ J2 also satisfy the condition. Thus

E(P) corresponds to a sublattice of the distributive lattice P(K).

It remains only to observe that GS and GT are up-sets in this lattice, so

non-negatively correlated by Corollary 7.2.2.

Now we come to Fishburn’s proof [99] of the strict xyz inequality, stating

that, except in trivial cases, the xyz inequality holds strictly. These “trivial

cases” are as follows.

• If either (x, y) or (x, z) is in P , then one of Pr(x ≺ y) and Pr(x ≺ z) is

equal to 1 and the other is equal to Pr(x ≺ y&x ≺ z).
• If either (y, x) or (z, x) is in P , then both Pr(x ≺ y) Pr(x ≺ z) and

Pr(x ≺ y&x ≺ z) are equal to 0.

On the other hand, if x is incomparable to both y and z in P , but (y, z) ∈
P , then Pr(x ≺ y) = Pr(x ≺ y&x ≺ z) > 0, but Pr(x ≺ z) < 1, so we have

strict inequality. Thus we may assume that x, y and z form a 3-element

antichain.

Observe that the inequality Pr(x ≺ y) Pr(x ≺ z) < Pr(x ≺ y&x ≺ z) can

be written as

Pr(z ≺ x ≺ y) Pr(y ≺ x ≺ z) < Pr(x ≺ y, z) Pr(y, z ≺ x); (7.4)

this is an instance of the easy result in Exercise 1.

Fishburn [99] not only proved this inequality, but also found the maximum

value of the ratio of the two sides, as a function of n = |X|.

Theorem 7.4.2 Let x, y and z be three mutually incomparable elements in

an n-element poset P = (X,P ). Then

Pr(z ≺ x ≺ y) Pr(y ≺ x ≺ z) ≤ ηn Pr(x ≺ y, z) Pr(y, z ≺ x),

where ηn =
(
n−1
n+1

)2
if n is odd and ηn = n−2

n+2 if n is even.
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Proof As usual, the first step is to construct a suitable distributive lattice.

We break X \ {x} into three pieces: U = U(x), D = D(x) and I = I(x),

being the sets of elements above, below and incomparable with x in P,

respectively. So y and z are in I. Now, in each linear extension λ of P,

consider the set of elements above x; this consists of U(x), together with

some up-set A(λ) in PI . This suggests the approach of using the set of

up-sets in PI , ordered by containment, as our distributive lattice.

For a subset A of I, set A = I \ A. For any up-set A of I, let µ(A)

be the number of linear extensions λ of P with A(λ) = A. We have that

µ(A) = e(PU∪A)e(PD∪A). If A and B are two up-sets, then we have

µ(A)µ(B)

µ(A ∪B)µ(A ∩B)
=

e(PU∪A)e(PU∪B)

e(PU∪A∪B)e(PU∪(A∩B))

e(PD∪A)e(PD∪B)

e(PD∪(A∩B))e(PD∪A∪B)
.

Theorem 7.3.4, or its dual, applies to both fractions on the right above, and

we obtain that

µ(A)µ(B)
µ(A∪B)µ(A∩B)

≤ |U∪A|! |U∪B|!
|U∪A∪B|! |U∪(A∩B)|!

|D∪A|! |D∪B|!
|D∪(A∩B)|! |D∪A∪B|! . (7.5)

If our sole aim was to prove the xyz inequality, we would now be done,

since we could use the FKG Inequality with this choice of µ—the right hand

side of (7.5) is at most 1, so µ is log-supermodular—with f(A) = χ(y ∈ A),

and with g(A) = χ(z ∈ A). For instance,
∑

A f(A)µ(A) is the total number

of linear extensions λ of P with y ∈ A(λ), i.e., the total number of linear

extensions with y above x. To take advantage of the stronger condition

satisfied by µ, we will need to use the greater flexibility provided by the

Four Functions Theorem.

To begin with, we investigate how close the ratio of factorials in (7.5) can

be to 1. If A ⊆ B or B ⊆ A, then the ratio is identically 1, but we are

interested in the case where neither A \ B nor B \ A is empty. Suppose

without loss of generality that |U ∪ A| = m, and |U ∪ B| = m + k, with

k ≥ 0, so that |D ∪ A| = n−m− 1 and |D ∪ B| = n−m− k − 1. Subject

to this, both |U ∪A∪B|! |U ∪ (A∩B)|! and |D ∪ (A∩B)|! |D ∪A∪B|! are

minimized when A \B consists of a single element, and |B \A| = k + 1. In

this case,

|U ∪A|! |U ∪B|!
|U ∪A ∪B|! |U ∪ (A ∩B)|!

|D ∪A|! |D ∪B|!
|D ∪ (A ∩B)|! |D ∪A ∪B|!

=
m

m+ k + 1

n−m− k − 1

n−m
,
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which is maximized when k = 0 and m is as close to (n− 1)/2 as possible,

and in this case the ratio is equal to ηn.

Thus we have that, if neither A \B nor B \A is empty, then

µ(A)µ(B) ≤ ηnµ(A ∪B)µ(A ∩B). (7.6)

Now we apply the Four Functions Theorem, Theorem 7.2.3. The lattice

L we use is the up-set lattice of PI , and we set

α(A) = µ(A)χ(y ∈ A, z /∈ A)

β(A) = µ(A)χ(z ∈ A, y /∈ A)

γ(A) = µ(A)χ(y, z ∈ A)

δ(A) = ηnµ(A)χ(y, z /∈ A).

To apply the Four Functions Theorem, we need to check that, for any

up-sets A and B in PI ,

α(A)β(B) ≤ γ(A ∪B)δ(A ∩B).

The left-hand side is zero unless y ∈ A \B and z ∈ B \A; in that case, the

left-hand side is µ(A)µ(B), the right-hand side is ηnµ(A∪B)µ(A∩B), and

the inequality follows from (7.6).

We deduce that

α(L)β(L) ≤ γ(L)δ(L).

Now, for instance, α(L) is the total number of linear extensions λ with

y ∈ A(λ), z /∈ A(λ), i.e., the total number with z below x and y above. On

dividing each term by e(P), we obtain

Pr(z ≺ x ≺ y) Pr(y ≺ x ≺ z) ≤ ηn Pr(x ≺ y, z) Pr(y, z ≺ x),

as required.

To see that Theorem 7.4.2 is best possible, consider the poset formed by

taking a chain of n − 2 elements, with x as close to the center as possible,

together with isolated elements y and z. If n is odd, then there are (n−3)/2

elements above and below x on the chain, and we have Pr(z ≺ x ≺ y) =

Pr(y ≺ x ≺ z) = 1
4(n − 1)2, while Pr(x ≺ y, z) = Pr(y, z ≺ x) = 1

4(n −
1)(n+ 1), so we have

Pr(z ≺ x ≺ y) Pr(y ≺ x ≺ z) =

(
n− 1

n+ 1

)2

Pr(x ≺ y, z) Pr(y, z ≺ x),

and the fraction here is just ηn. The calculation for the case of n even is

similar.
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7.5 Sequences in posets, and the Alexandrov-Fenchel inequalities

Besides the Four Functions Theorem and its relatives, there is one other

tool that has proved useful for proving correlation inequalities of a different

style, going by the name of the Alexandrov-Fenchel Inequalities for Mixed

Volumes.

This tool can be used to prove that certain sequences z0, z1, . . . , zm are

log-concave: zi−1zi+1 ≤ z2i , for i = 1, . . . ,m − 1. A log-concave sequence zi
is necessarily unimodular: increasing up to a certain point and decreasing

thereafter.

In this section, we shall present the Alexandrov-Fenchel Inequalities in

conjunction with one of the key applications, given by Stanley [99] in an

influential paper of 1981.

For P = (X,P ) an n-element poset, x ∈ X, and ≺ a linear extension of

P , let h≺(x) denote the height of x in ≺, i.e., the number of elements below

or equal to x in ≺, so h≺(x) ∈ [n]. Now, for h = 1, . . . , n, let e(P;x → h)

denote the number of linear extensions ≺ of P in which h≺(x) = h. Stanley

proved that the sequence e(P;x → h), h = 1, . . . , n, is log-concave (and

therefore unimodular).

The fact that this sequence is unimodular hopefully accords with intuition:

an element x has a “most probable height” h, and the probability that its

height takes a value h′ drops off as h′ moves away from h.

Suppose for example that x is only incomparable with the two elements

y and z; then h≺(x) takes just three values i − 1, i and i + 1, say. The

log-concavity of e(P;x→ h) is equivalent to:

(Pr(z ≺ x ≺ y) + Pr(y ≺ x ≺ z))2 ≥ Pr(x ≺ y, z) Pr(y, z ≺ x).

Compare this with (7.4), a statement equivalent to the xyz inequality, and

we see that this is in some sense a negative correlation equality.

We will approach Stanley’s proof indirectly. We saw in the previous chap-

ter that the volume of the order polytope O(P) is equal to e(P)/n!, for

P = (X,P ) an n-element poset. We fix an element x of X and a constant

λ ∈ [0, 1], and ask for the (n− 1)-dimensional volume of the slice

O(P;x→ λ) = {a ∈ O(P) : ax = λ}.

We calculate this in two ways.

First, let’s follow the simple argument we used before, and break O(P)

into e(P) pieces, according to the order of the coordinates. For a linear

extension ≺ of P , in which h≺(x) = h, the (n − 1)-dimensional volume of
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the slice O(≺;x→ λ) is given by

λh−1

(h− 1)!

(1− λ)n−h

(n− h)!
.

To see this, note first that the volume of that part of [0, 1]X in which ay ≤
ax = λ for y ≺ x and ay ≥ ax = λ for x ≺ y is λh−1(1 − λ)n−h. This

region is partitioned into (h− 1)! (n− h)! pieces of equal volume, according

to the order of the coordinates, and one of these corresponds to the slice

O(≺;x→ λ).

Therefore, summing over all linear extensions, we have

Voln−1(O(P;x→ λ)) =
n∑
h=1

e(P;x→ h)
λh−1

(h− 1)!

(1− λ)n−h

(n− h)!
, (7.7)

where Voln−1 denotes (n− 1)-dimensional volume.

Let P(x; 0) denote the poset obtained from P by deletingD[x], and P(x; 1)

the poset obtained by deleting U [x]. The order polytope B = O(P(x; 0)) is

exactly the slice O(P;x→ 0) and similarly A = O(P(x; 1)) = O(P;x→ 1).

For λ ∈ [0, 1], consider the Minkowski sum λA+ (1−λ)B = {λa+ (1−λ)b :

a ∈ A,b ∈ B}. We claim that this is exactly O(P;x→ λ).

It’s clear that λA + (1 − λ)B ⊆ O(P;x → λ). For the converse, let c be

a vector in O(P;x→ λ) and define, for y ∈ X,

ay =

{
cy/λ cy ≤ λ
1 cy ≥ λ;

by =

{
0 cy ≤ λ
(cy − λ)/(1− λ) cy ≥ λ.

Now it is evident that a ∈ A, b ∈ B, and λa + (1 − λ)b = c. Thus

O(P;x→ λ) = λA+ (1− λ)B.

Combining this with 7.7 gives us that

Voln−1(λA+ (1− λ)B) =

n∑
h=1

e(P;x→ h)
λh−1

(h− 1)!

(1− λ)n−h

(n− h)!
.

This can be interpreted as expressing Voln−1(λA+(1−λ)B) as a polynomial

in λ, whose coefficients are given in terms of the numbers e(P;x→ h).

Now we can state the key results from convex geometry. For A and B
convex bodies in Rm, define their joint dimension to be the dimension of

the affine hull of λA+ µB, for any λ, µ > 0: this is well-defined.

Theorem 7.5.1 (Minkowski’s Theorem) Let A and B be two convex

bodies in Rm, and let d be their joint dimension. Then there are non-negative
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constants V (AkBd−k), for k = 0, . . . , d, called the mixed volumes of A and

B, such that

Vold(λA+ µB) =
d∑

k=0

(
d

k

)
V (AkBd−k)λkµd−k

for all non-negative constants λ, µ.

Setting µ = 0, λ = 1, gives that V (AdB0) = Vold(A), and similarly

V (A0Bd) = Vold(B). The other mixed volumes don’t generally have any

such simple interpretation.

In our example, d = n− 1, and V (AkBn−1−k) = e(P;x→ k+ 1)/(n− 1)!,

for k = 0, . . . , n− 1.

Theorem 7.5.2 (Alexandrov-Fenchel Inequalities for Mixed Vol-

umes) For any pair A,B of convex bodies with joint dimension d, the se-

quence V (AkBd−k), k = 0, . . . , d, is log-concave.

Applying this in our situation gives the result of Stanley.

Theorem 7.5.3 For any n-element poset P = (X,P ), and any x ∈ X, the

sequence e(P;x→ h), h = 1, . . . , n, is log-concave.

Given that this result is true, one would expect there to be an elementary

proof, perhaps giving an injection from E(P;x→ h+ 1)×E(P;x→ h− 1)

to E(P;x → h) × E(P;x → h), where E(P;x → k) is the set of linear

extensions ≺ of P with h≺(x) = k. But Stanley’s proof is the only one

known.

Minkowski’s Theorem and the Alexandrov-Fenchel Inequalities can be

generalized in the obvious way to apply to sums of more than two bod-

ies, as we now state.

Theorem 7.5.4 Let A1, . . . ,Ar be convex bodies in Rm, and let d be the

dimension of A1 + · · · + Ar. Then there is a set of non-negative constants

V (Ak11 · · · Akrr ), one for each sequence (k1, . . . , kr) of non-negative integers

summing to d, such that

Vold(λ1A1 + · · ·+ λrAr) =
∑

(k1,...,kr)

(
d

k1, . . . , kr

)
V (Ak11 · · · A

kr
r )λk11 · · ·λ

kr
r ,

for any non-negative λ1, . . . λr.

Moreover, if k3+· · ·+kr = d−k, then the sequence V (Ah1A
k−h
2 Ak33 · · · Akrr ),

h = 0, . . . , k, is log-concave.
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An application of this result is given in Exercise 18.

Just as for the lattice methods we considered earlier in the chapter, one

cannot expect to be able to apply the Alexandrov-Fenchel Inequalities too

often: there is no reason to suppose that a typical sequence arising in a

combinatorial setting will be a sequence of mixed volumes. But when the

technique works, it is extremely powerful.

Here is a result, and (sketch) proof, of Kahn and Saks [99], along extremely

similar lines to Theorem 7.5.3.

Theorem 7.5.5 Let P = (X,P ) be an n-element poset, and let x and y

be distinct elements of X. For i = 1, 2, . . . , n, let f(i) be the number of

linear extensions ≺ of P in which h≺(y) − h≺(x) = i. The sequence f(i),

i = 1, . . . , n, is log-concave.

Proof We give just an outline of the proof, leaving the details to the reader

(Exercise 19).

For λ ∈ [0, 1], let O(P;x, y;λ) = {a ∈ O(P) : ay − ax = λ}.
Let ≺ be a linear extension of P in which h≺(y) − h≺(x) = i. Then one

can show that

Voln−1(O(≺;x, y;λ)) =
λi−1

(i− 1)!

(1− λ)n−i

(n− i)!
.

Therefore

Voln−1(O(P;x, y;λ)) =

n∑
i=1

f(i)
λi−1

(i− 1)!

(1− λ)n−i

(n− i)!
.

Also O(P;x, y;λ) = λO(P;x, y; 1) + (1− λ)O(P;x, y; 0). So f(i) is equal

to the mixed volume V (O(P;x, y; 1)i−1O(P;x, y; 1)n−i)/(n − 1)!, for i =

1, . . . , n, and the result follows by the Alexandrov-Fenchel Inequalities.

(Notice that we have included the term f(n), although it is always zero.

This corresponds to the fact that the (n−1)-dimensional volume ofO(P;x, y; 1)

is always equal to zero.)

We conclude this chapter by turning back to order-preserving maps. What-

ever intuition we might have for the sequence e(P;x→ h) being log-concave

or unimodular, surely this applies equally if we deal with order-preserving

maps instead of linear extensions? One might try to use Theorem 7.5.3 to

prove the analogous result for order-preserving maps, or one might try to

find a proof using mixed volumes. Neither of these approaches seem to work,

but Daykin, Daykin and Paterson [99] found an ingenious elementary proof

of the desired result.
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Theorem 7.5.6 For a poset P = (X,P ), an element x ∈ X, a natural

number k, and j ∈ [k], let f(j) = f(P; k;x → j) be the number of order-

preserving maps ω ∈Mk(P) with ω(x) = j.

The sequence f(j), j = 1, . . . , k, is log-concave.

Proof For P = (X,P ), x, k and j as above, let F (j) = F (P; k;x → j)

be the set of order-preserving maps ω ∈ Mk(P) with ω(x) = j. We shall

prove the result by giving an explicit injection Φ from F (j − 1)× F (j + 1)

to F (j)× F (j), for j = 2, . . . , n− 1.

Given any pair of order-preserving maps (ω1, ω2) inMk(P), and any subset

Y of X, we say that the following pair (ω3, ω4) of maps is obtained by

exchanging Y :

for z /∈ Y,

{
ω3(z) = ω1(z)

ω4(z) = ω2(z);
for y ∈ Y,

{
ω3(y) = ω2(y)− 1

ω4(y) = ω1(y) + 1.

Note that the range of ω3 may include 0, and that of ω4 may include k+ 1.

Note also that, if we take the new maps (ω3, ω4), and exchange the same set

Y , then we recover (ω1, ω2).

Now suppose our initial maps ω1, ω2 are in F (j− 1) and F (j+ 1) respec-

tively. We shall choose a suitable set Y = Y (ω1, ω2) containing x, and then

set Φ(ω1, ω2) to be the pair (ω3, ω4) obtained by exchanging Y . We would

like these two new maps both to be in F (j) = F (P; k;x → j); choosing Y

to include x does ensure that ω3(x) = ω4(x) = j.

How can ω3 fail to be order-preserving? One possibility is that there are

elements y ∈ Y , z /∈ Y , with y > z, but ω2(y)− 1 = ω3(y) < ω3(z) = ω1(z).

Alternatively, there are y ∈ Y , z /∈ Y , with y < z, but ω2(y) − 1 > ω1(z).

Similarly, if ω4 fails to be order-preserving, then there are y ∈ Y , z /∈ Y ,

such that either y > z but ω1(y)+1 < ω2(z), or y < z but ω1(y)+1 > ω2(z).

Accordingly, we say that y forces z (with respect to (ω1, ω2)) if any of the

following four applies:

(i) y > z, ω2(y)− 1 < ω1(z);

(ii) y < z, ω2(y)− 1 > ω1(z);

(iii) y > z, ω1(y) + 1 < ω2(z);

(iv) y < z, ω1(y) + 1 > ω2(z).

We then define the set Y = Y (ω1, ω2) to be the unique minimal subset of X

containing x and closed under forcing. Equivalently, Y is the unique minimal

set containing x whose exchange results in a pair of order-preserving maps.

We next claim that all elements y ∈ Y satisfy ω1(y) + 1 < ω2(y): in

particular, this implies that the images of ω3 and ω4 are contained in [k].
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To prove the claim, we first notice that x satisfies the condition. Thus

we need only prove that, if the condition holds for y, and y forces z, then it

holds for z. If y and z are as in (i) above, then ω2(y)− 1 < ω1(z) ≤ ω1(y),

since ω1 is order-preserving, so y does not satisfy the condition. If y and z

are as in (ii) above, then ω2(z) − 1 ≥ ω2(y) − 1 > ω1(z), so z does satisfy

the condition. We argue similarly if y and z are as in (iii) or (iv) above.

We have now shown that ω3 and ω4 are both in F (j), so Φ is a map from

F (j−1)×F (j+ 1)→ F (j)×F (j). To complete the proof, we need to show

that Φ is an injection, i.e., (ω1, ω2) can be recovered from (ω3, ω4).

Suppose we are given (ω3, ω4); as before, there is a unique minimal set

Z, containing x, whose exchange gives a pair of order-preserving maps. We

know that exchanging Y gives us back (ω1, ω2), so Z ⊆ Y . We claim that

Z = Y : to prove this, it is enough to show that, whenever y ∈ Y forces z

with respect to (ω1, ω2), then also y forces z with respect to (ω3, ω4).

This last claim is just a matter of rewriting: if y ∈ Y forces z with

respect to (ω1, ω2), then both elements are in Y , and one of the following

four conditions holds:

(i) y > z, ω3(y) < ω4(z)− 1;

(ii) y < z, ω3(y) > ω4(z)− 1;

(iii) y > z, ω4(y) < ω3(z) + 1;

(iv) y < z, ω4(y) > ω3(z) + 1.

In each of these cases, y does indeed force z with respect to (ω3, ω4).

See Exercise 20 for an example to illustrate this proof.

Exercises

7.1 Show that, for any subsets A and B of a set S, the following are

equivalent. (Here C = S \ C, for C ⊆ S.)

|A| |B| ≤ |A ∩B| |S|,
|A| |B| ≥ |A ∩B| |S|,

|A ∩B| |B ∩A| ≤ |A ∩B||A ∩B|.

7.2 In the FKG Inequality, is the condition that f and g be functions to

the non-negative reals essential? What about the condition that µ

is a function to the non-negative reals?

7.3 Prove that, if f , g and h are functions from n to R+ with f and g

non-decreasing, then(
n−1∑
i=0

f(i)h(i)

)(
n−1∑
i=0

g(i)h(i)

)
≤

(
n−1∑
i=0

f(i)g(i)h(i)

)(
n−1∑
i=0

h(i)

)
.
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This is Chebychev’s Inequality.

7.4 Suppose that A and B are two subsets of 2n such that, for every

A ∈ A and B ∈ B, A and B are incomparable in the subset order.

Show that |A| |B| ≤ 22n−4. (Hint: use (7.3).)

7.5 Suppose that A is a subset of 2n such that, for every pair A,B of

sets in A, A∩B 6= ∅, and A∪B 6= [n]. Show that |A| ≤ 2n−2. Show

also that this inequality is best possible.

7.6 Show that, for any non-distributive lattice L, there are subsets A

and B of L such that |A| |B| > |A ∨B| |A ∧B|.
7.7 Show that, for any up-sets U , V of a lattice L, U ∨ V = U ∩ V .

7.8 Explain why, for any poset P, M2(P) is in 1-1 correspondence with

the down-set lattice D(P).

7.9 Let P = (X,P ) be a poset covered by two disjoint chains Y and Z.

Show that it need not be the case that, in M2(P), events ω(y1) ≺
ω(z1) and ω(y2) ≺ ω(z2) are non-negatively correlated whenever

y1, y2 ∈ Y and z1, z2 ∈ Z. (Hint: there is an example with |X| = 4.)

7.10 How many order-preserving maps are there from [n] to [k]?

7.11 Let P = (X,P ) be a finite poset. Show that, as k →∞,

Pr k(ω(x) = ω(y) for some x, y ∈ X)→ 0.

7.12 For the lattice structure L on Mk(P) defined in the proof of The-

orem 7.3.3, which are the join-irreducible elements? Describe the

poset Q such that L is isomorphic to 2Q. What is the dimension of

L?

7.13 Give Mk(P) the lattice structure arising from the embedding Φ of

Mk(P) into Hk, as in Theorem 7.3.5. For −k + 2 ≤ ` ≤ k − 1, let

H`k be the sublattice of Hk consisting of those vectors whose second

co-ordinate is ` or `− 1. By considering the pre-image of H`k under

Φ, show that the function

Prk(ω(x) ≥ m | ω(x)− ω(y) = `)

is non-decreasing in `, for each fixed k.

7.14 Suppose that x, y, z are elements of a finite poset P. Show that

Prk(ω(x) � ω(y) | ω(y) = `, ω(z) = m)

is non-decreasing in `, for fixed k and m.

7.15 Is it true that, for every poset P = (X,P ) and every four elements

a, b, c, d, the events a ≺ c ≺ b and a ≺ d ≺ b are non-negatively

correlated?
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7.16 Suppose that the sequence f(j) is log-concave. Show that f(i)f(i+

k + `) ≤ f(i+ k)f(i+ `) for any i, and any k, ` ≥ 0.

(Sometimes this is given as the definition of log-concavity: this ex-

ercise shows that it is enough to verify the condition for k = ` = 1.)

7.17 Use Theorem 7.5.3 to show that, for fixed m, the sequence of bino-

mial coefficients
(
m
h

)
, h = 0, . . . ,m, is log-concave.

(Unsurprisingly, this is easy to prove directly.)

7.18 Let x and y be elements of an n-element poset P = (X,P ), with

x < y, and let m be an element of [n] such that e(P; y → m) > 0.

Let f(h) be the number of linear extensions ≺ in which h≺(x) = h

and h≺(y) = m.

Use Theorem 7.5.4 to show that the sequence f(h), h = 1, . . . ,m−
1, is log-concave.

7.19 Fill in the details in the proof of Theorem 7.5.5.

7.20 Let P = (X,P ) be the three-element poset on {x, y, z} whose only

relations are x < y and z < y. Explore how the proof of Theo-

rem 7.5.6 applies to this example.

State explicitly which pairs (ω1, ω2) ∈ F (j − 1)×F (j + 1) have Y

equal to (a) {x}, (b) {x, y}, (c) {x, y, z}. Verify that the images of

Φ in these three cases are disjoint.

Give an example of a pair (ω, ω′) ∈ F (j)×F (j) that is not in the

image of Φ.

7.6 Notes and References

The result in Exercise 4 is due to Seymour [99]. Many sources in the lit-

erature credit Seymour with proving (7.2), although this follows instantly

from Kleitman’s result, and Seymour’s paper, organized as an application

of Kleitman’s Theorem, does not draw a distinction between the two forms.

Theorem 7.3.3 appears in Shepp [99], with the proof given here. Brightwell [99]

showed that one has strict positive correlation here unless all of y1, y2, z1
and z2 are in different components of the comparability graph of P. The

following question is also answered in [99]: for which posets P = (X,P ) and

4-tuples of elements (x, y, u, v) is it the case that, for every poset Q = (X,Q)

with Q ⊆ P , the events x ≺ y and u ≺ v are non-negatively correlated? (For

instance, by Theorem 7.3.3, this is true whenever neither x nor y shares a

component of P with u or v.) The answer is that this is the case ex-

actly when, in the comparability graph of P, every path from x to v passes

through either y or u, and every path from y to u passes through either x

or v. Exercises 13 and 14 are lemmas from [99].
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Theorem 7.3.4 is due to Fishburn [99], who needed it as a lemma in his

proof of the strict xyz Inequality; the proof here, via the theorem of Shepp,

was given by Brightwell [99].

Theorem 7.4.1 was proved by Graham, Yao and Yao [99]. Much shorter

proofs, using the FKG Inequality or its relatives, were given by Kleitman and

Shearer [99] and by Shepp [99]. Brightwell [99] gave a proof via an explicit

injection, and also showed that, under the conditions of the theorem, events

y1 ≺ z1 and y2 ≺ z2 are strictly positively correlated except in trivial cases.

There is a conjectured common generalization of Theorem 7.4.1 and The-

orem 7.3.3: if P is obtained as a lexicographic sum by taking a union of

two chains, Y and Z, and substituting posets Yi and Zj for each element

yi ∈ Y and zj ∈ Z, and S and T are subsets of (∪Yi) × (∪Zj), then GS
and GT are non-negatively correlated. This was first conjectured by Gra-

ham [99] in a different form, shown to be equivalent to this one by Daykin

and Daykin [99]. The fact that this is resistant to various attempts to prove

it based on the correlation inequalities introduced in this chapter perhaps

reveals that we are still some way from a complete understanding of the

phenomenon of correlation in posets.

The xyz Inequality was originally conjectured by Rival and Sands [99],

and proved a few months later by Shepp. The proofs of the xyz Inequality

here are almost exactly as they appear in the papers of Shepp [99] and

Fishburn [99].

Theorem 7.5.1 was proved by Minkowski [99] in 1910, and the Alexandrov-

Fenchel Inequalities were proved independently by Alexandrov [99] and

Fenchel [99] in 1936. By now, there are a number of proofs of the Alexandrov-

Fenchel Inequalities, but none that is suitable for description here. A recent

book covering this area is that of Schneider [99]. The proofs of Theorem 7.5.3

and Theorem 7.5.5 we give here are as in the original papers of Stanley [99]

and Kahn and Saks [99] respectively.

As mentioned in the course of the chapter, it would be good to have more

methods for proving correlation or log-concavity results that don’t require

the construction of a distributive lattice or a sequence of mixed volumes.

As a first step in this direction, Brightwell and Trotter [99] give elementary

proofs of Shepp’s result, Theorem 7.3.3, and of Fishburn’s strong form of

the xyz Inequality. These proofs are not shorter or simpler than the ones

presented here, but they do not use any version of the Ahlswede-Daykin

Theorem, and it is hoped that they might be generalized to settings where

it is not possible to construct a convenient auxiliary lattice. As yet, however,

there are no successes to report.


