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This chapter is the first of three concerned with various aspects of the prob-
lem of estimating the number e(P) of linear extensions of a partial order
P. In this chapter, we concentrate on the general problem, giving various
inequalities relating e(P) to various other parameters of P.

The emphasis will be placed on relating e(P) to the volume of certain
convex polytopes. This has proved to be a beautiful and fruitful approach
to dealing with e(P), and we will hear its echoes in subsequent chapters.

8.1 Introduction; Elementary Inequalities

Recall that a linear extension of a poset P = (X,P ) is a linear order ≺ on
X extending <, i.e., so that x ≺ y whenever x < y.

For a poset P, let E(P) denote the set of linear extensions of P, and
e(P) = |E(P)| the number of linear extensions of P . Obviously 1 ≤ e(P) ≤
n!, where n = |X|, with the bounds achieved in the case of P a chain and
an antichain respectively. If Q = (X,Q) is another poset on X with P ⊂ Q,
then e(P) > e(Q): the strict inequality follows from Szpilrajn’s Theorem,
Theorem 9.99.

For some purposes, it is helpful to regard E(P) as a probability space,
with each element equally likely. Then we can regard subsets as events, and
talk about their probabilities. For instance, we can consider the event that
element x is below element y and its probability Pr(x ≺ y). We will use this
notion only occasionally in this chapter, but it will be central to the next
two.

One motivation for studying e(P) is its connection with sorting. Suppose
we are given a set X = {x1, . . . , xn}, told that it is in some linear order,
unknown to us, and asked to find the linear order: this is the sorting problem.
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2 Counting Linear Extensions: Polyhedral Methods

In the purest form, all we are allowed to do to accomplish the task is to make
sequential queries of the form “Is xi below xj?”, receiving an (instant and
truthful) Yes/No answer. The information we have available to us part-way
through a sorting process is in the form of a poset P on the ground-set
X. Now the set of linear orders on X that remain consistent with the
information we have is just E(P).

How should we go about choosing our next query? Ideally, we would pick
a pair (xi, xj) such that about half of the linear extensions of P have xi

above xj : then, no matter what the answer to the query “Is xi below xj?”,
we will have reduced the number of linear extensions by a factor of about 2.
Indeed, it is easy to see that log2 e(P) is a lower bound on the number of
queries we need, in the worst case or in the average case, to complete the
sorting process. Is this a good bound? Can we always find a pair to compare
such that xi is below xj “about half the time”? We return to these questions
in Chapter 10.

For now, let us simply note that there is reason to be interested in methods
for bounding or estimating the number of linear extensions of a partial order.

We’ll start with a simple yet useful inequality.

Theorem 8.1.1 For any poset P = (X,P ), with |X| = n,

e(P) ≤ width(P)n.

Proof We proceed by induction on n. The result is certainly true for the
one-element poset. Suppose then that we have the inequality for all posets
on fewer than n elements.

Given a poset P on a ground-set X of size n, we partition E(P) according
to the bottom element. So, for x maximal in P , let e(P;x) be the number
of linear extensions in which x is bottom, and note that e(P;x) = e(P−x).

Thus we have

e(P) =
∑

x∈Min(P)

e(P− x). (8.1)

Each poset P − x has n−1 elements, and width at most width(P), so
e(P − x) ≤ width(P)n−1. The number of terms in the sum is |Min(P)| ≤
width(P), so the inequality holds for P and we are done.

Another way to look at this is as building a linear extension from the
bottom up: at each stage there are at most width(P) choices, irrespective
of what decisions were made earlier.
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Fig. 8.1. The five linear extensions of the poset N , and the corresponding units of
flow.

Yet another way: partition P into w = width(P) chains C1, . . . , Cw, and
encode a linear extension ≺: x1 ≺ x2 ≺ · · · ≺ xn of P by a string σ1 · · ·σn,
where σi = j if xi is in Cj . The linear extension can be recovered from the
string, and there are wn possible strings.

This bound can easily be improved; see Exercise 1. But the general form
is what matters: if w is fixed, n is large, and P = (X,P ) is an n-element
poset of width w, then e(P) is at most wn, which is much smaller than n!,
the total number of linear orderings of X.

Indeed, we sometimes want to think of factors that are merely exponen-
tially large (at most Cn for some constant C) as being negligible in this
context. In our sorting application, for instance, the number of compar-
isons required to sort from scratch is well known to be (1 + o(1))n log2 n,
whereas if we are down to Cn possible outcomes then (as we shall confirm
in Chapter 10) a further C ′n comparisons are all that we need to finish the
job.

Our first real result can be thought of as an extension of (8.1); the result
and entertaining proof are due to Sidorenko [99].

Theorem 8.1.2 For any antichain A in a poset P,

e(P) ≤
∑

x∈A

e(P− x),

with equality if and only if A intersects every maximal chain.

We have already noted in (8.1) that we have equality if A is the antichain
of minimal (or of maximal) elements.

Proof To follow this proof, it may help to consider the example in Figure ??.
We form a directed network from P = (X,P ), with one node for each

element of X, together with a source s and sink t. Put an arc from s to
each minimal element of P, an arc from each maximal element to t, and an
arc from x to y whenever y covers x in P.

Now, for each linear extension x1 ≺ x2 ≺ · · · ≺ xn of P, send one unit
of flow along the path s → x1 → x2 → · · · → xn → t. This flow is not
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restricted to using arcs of the network: it may also leap across incomparable
pairs.

We now combine these unit flows, producing a total flow of value e(P)
from s to t.

Suppose x and y are incomparable elements of P. Linear extensions of P
where y is the successor of x are in 1-1 correspondence with linear extensions
where x is the successor of y: the correspondence is obtained by swapping x
and y whenever they are adjacent in the linear extension. What this means
is that the net flow from x to y in our network is 0. Therefore, we genuinely
have a flow of value e(P) through the directed network.

For any node x, the value of the flow into x is the number of linear
extensions in which x is the successor of one of its lower covers; for minimal
x, this should be interpreted as the number in which x is the bottom element
of the linear extension. In other words, the value of the flow into x is the
number of linear extensions in which x is inserted into a linear extension
of P − x in the lowest possible position. So the value of the flow into x is
exactly e(P− x).

For any antichain A in the network, there is no directed path between
elements of A, so the sum of the flow values through the nodes in A, which
is equal to

∑
x∈A e(P− x), is at most the total flow value e(P).

This completes the proof of the inequality.
We have equality as long as A separates s from t in the network, i.e., there

is no covering edge from D(A) to U(A)—conversely, if there is such an edge,
then it carries some flow, which does not pass through A, so the inequality
is strict. Any such edge can be extended to a maximal chain bypassing A,
and conversely any such maximal chain must involve a covering edge from
D(A) to U(A).

As a non-trivial example where we have equality, let P be a ranked poset
with three ranks A1, A2, A3. All maximal chains intersect A2, so we have∑

x∈A2
e(P−x) = e(P). There does not seem to be a simple direct proof of

this fact via a partition of E(P).

8.2 Polytopes: Preliminaries

For much of this chapter, we shall be dealing with convex polytopes in Rn,
where n is the number of elements of the poset. We start by briefly reviewing
the basic terminology. For a fuller treatment, see ??? [99].

A convex polyhedron is the non-empty intersection of finitely many half-
spaces in Rn; so it is defined as the set of vectors in Rn satisfying finitely
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many linear inequalities. If a convex polyhedron is bounded, it is called a
convex polytope. We will be considering convex polytopes contained within
[0, 1]n.

Suppose that the convex polyhedron K has full dimension, i.e., is not
contained in any hyperplane. Then there is a unique minimal collection of
half-spaces whose intersection is K. The boundaries of these half-spaces are
called defining hyperplanes, and the intersection of a defining hyperplane
with K is a facet. (This is the n-dimensional generalization of a “side” of a
convex polygon in R2, or a “face” of a convex polyhedron in R3.)

An extreme point of a convex body K is a point in K that cannot be
expressed as a convex combination of two different points of K. A bounded
convex body K in Rn is always the convex hull of its extreme points; indeed,
every point in K can be written as a convex combination of at most n+1
of its extreme points (Carathéodory’s Theorem). A convex polytope K has
finitely many extreme points, called vertices, each of which is the intersection
of some n of the defining hyperplanes of K.

We will be identifying each element of a poset with one coordinate of our
space Rn. We achieve this by denoting the space RX , which is formally the
set of functions from the n-element set X to R. We use a to denote an
element of RX , and ax to denote the coordinate corresponding to element x
of the ground-set X.

If Y is a subset of X, we define the indicator vector eY to be the vector
with eYx = 1 if x ∈ Y , and eYx = 0 if x /∈ Y .

The n-dimensional Euclidean volume of a body K in Rn is denoted Vol(K).

8.3 The Order Polytope

Let P = (X,P ) be a poset. The most natural way of encoding P as an
n-dimensional polytope is to consider the order polytope

O(P) = {a ∈ [0, 1]X : ax ≤ ay whenever x < y in P}.
A vector a in O(P), with no two entries equal, induces a linear order ≺

on X: x ≺ y if and only if ax < ay. The definition of the order polytope
ensures that this order ≺ is a linear extension of P . Moreover, if we set

O(≺) = {a ∈ [0, 1]X : ax ≤ ay whenever x ≺ y}
for each linear order ≺ on X, then O(P) can be written as the union⋃
≺∈E(P)O(≺). This union is disjoint, up to a set of measure zero where

two coordinates are equal.
As the set of linear extensions of P can be recovered from O(P), so can
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P itself. Not surprisingly, a good deal of information about P can be read
off from O(P).

Proposition 8.3.1 Let P = (X,P ) be an n-element poset.

(i) The facets of O(P) are given by {a ∈ O(P) : ax = ay}, where (x, y) is
a covering pair in P , as well as {a ∈ O(P) : ax = 0}, for x minimal
in P , and {a ∈ O(P) : ax = 1}, for x maximal in P .

(ii) The vertices of O(P) are the indicator vectors eU , where U is an
up-set of P .

(iii) The volume Vol(O(P)) is equal to e(P)/n!.

Proof We’ll prove just the last of these statements; the other two are left
as exercises.

Notice that [0, 1]X is, up to a set of measure zero, partitioned into n!
pieces O(≺), each of which—by symmetry—has the same volume, which is
therefore 1/n!. Now, again up to a set of measure zero, O(P) is the union
of e(P) of these sets.

The simple observations in this proposition have some surprisingly far-
reaching consequences, which we’ll come back to at the end of this chapter.

8.4 The Chain Polytope

Interesting though the order polytope is, it is an awkward object to study
geometrically. To get a feel for this polytope, observe that the entire diagonal
(the set of points in [0, 1]X where all coordinates are equal) is contained in
O(P), so the polytope is (typically) a fairly “thin” set “strung out” along
the diagonal.

In this section, we look at a different polytope, the chain polytope, as-
sociated with P. Geometrically, this is a much more pleasant beast than
the order polytope. What makes it particularly interesting is the fact, far
from immediately obvious, that it has the same volume e(P)/n! as the order
polytope.

Given a partial order P = (X,P ), we define the chain polytope to be

C(P) = {a ∈ [0, 1]X :
∑

x∈C

ax ≤ 1 for every chain C of P}.

So every chain C of P imposes a “constraint” on the vectors of the chain
polytope: of course, it is only the maximal chains that matter (i.e., generate
facets) in this context, as larger chains impose stronger constraints.



8.4 The Chain Polytope 7

For a simple example, let Q be any linear order on an n-element set X.
Then C(Q) = {a ∈ [0, 1]X :

∑
x∈X ax ≤ 1}, the standard n-dimensional

simplex, of volume 1/n!. (Even slightly more complex examples will test
the reader’s powers of geometric visualization considerably.)

What can we say immediately about the chain polytope C(P) of a poset P?
For one thing, as it is defined purely in terms of the sets forming chains, i.e.,
the cliques in the comparability graph of P, it is a comparability invariant:
another partial order with the same comparability graph will have the same
chain polytope.

The chain polytope is a down-set in RX
+ : if a satisfies the constraints, and

0 ≤ bx ≤ ax for each x, then the vector b also satisfies the constraints. It
also has full dimension, and is convex and compact. A body satisfying these
conditions is called a convex corner in RX

+ .
Let A be an antichain in P. Then the indicator vector eA is an element of

C(P): each chain in P contains at most one element of A, so each constraint
is satisfied by eA. These indicator vectors are certainly vertices of C(P), as
they are vertices of [0, 1]n. What is not so obvious is that these are the only
vertices of C(P).

To understand this issue, we need to consider a more general notion.
What we have done is define a polytope associated with the comparability
graph of a partial order, but there is no reason to restrict the definition to
comparability graphs.

For any graph G = (V,E), we define a polytope

FS(G) = {a ∈ [0, 1]V :
∑

v∈C

av ≤ 1 for every clique C of G}.

If G is the comparability graph Comp(P) of a partial order P, then this is
just the chain polytope C(P). As before, we see that, for a stable set S of
G, eS is a vertex of FS(G).

Now let the graph H be a 5-cycle. The vector (1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2) is in FS(H),

as maximal cliques only have size 2. However, each vector eS , for S a stable
set in H, has coordinates summing to at most 2, so (1

2 , . . . ,
1
2) is not in the

convex hull of the vectors eS . In fact, (1
2 , . . . ,

1
2) is a vertex of FS(H): it is

the only other one besides the eS .
In this more general context, one is led to define two different polytopes.

The stable set polytope S(G) of a graph G is the convex hull of the indicator
vectors of its stable sets. This is always contained within the fractional
stable set polytope FS(G) of G, which is the polytope defined above. For
G a 5-cycle, this containment is strict.
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It is a theorem of Lovász [99] that FS(G) = S(G) if and only if G is
perfect.

Now, the chain polytope of a poset P is just the fractional stable set
polytope of the comparability graph Comp(P): comparability graphs are
perfect, so this is also the stable set polytope of Comp(P). This means that
the indicator vectors eA of antichains are indeed the only vertices of the
chain polytope.

Specialized to the chain polytope, Lovász’s result can be restated as saying
that every vector in C(P) can be written as a convex combination of indicator
vectors of antichains. In the next section, we shall prove this and more.

8.5 The Laminar Decomposition

In this section, we introduce the idea of the laminar decomposition of an
element of RX

+ . This notion was first considered by Kahn and Kim [99].
Recall from Chapter 9.99 that the set of antichains in a partial order

P = (X,P ) forms a lattice, identifying the family of antichains with the
up-set lattice, ordered by reverse inclusion, so that antichain A is below
antichain A′ if and only if U [A] ⊃ U [A′]. A laminar family of antichains is
a chain in this lattice.

It is clear that each maximal laminar family consists of exactly n+1
antichains A0 < · · · < An: the up-set U [Aj ] contains exactly n− j elements,
so A0 is the antichain of minimal elements and An is the empty antichain.
Moreover, the single element xj in U [Aj−1]\U [Aj ] is minimal in U [Aj−1], so
x1 ≺ x2 ≺ · · · ≺ xn is a linear extension of P . We can reverse this process:
given a linear extension x1 ≺ x2 ≺ · · · ≺ xn, the corresponding laminar
family is found by setting Aj = Min({aj+1, . . . , an}), for j = 0, . . . , n. Thus
maximal laminar families are in 1-1 correspondence with linear extensions.

Proposition 8.5.1 For any laminar family (A1, . . . , Am) of non-empty an-
tichains in a poset P, there is a chain C in P meeting each antichain in the
family.

Proof It’s enough to prove the result for a maximal laminar family (A0, . . . , An−1),
with the empty antichain An dropped, corresponding to a linear extension
x1 ≺ x2 ≺ · · · ≺ xn.

We construct the chain C by working greedily down the linear extension:
we take xn as the top element of C, then read down, taking xj into C if it
is below the current bottom element of the chain.

Now the antichain Aj is the set of minimal elements among {xj , . . . , xn},



8.5 The Laminar Decomposition 9

Fig. 8.2. A vector in O(P) and its laminar decomposition.

so it includes the last element from this set taken into the chain C. Hence
C meets each Aj , as required.

For a maximal laminar family, inspection of the proof above reveals that
the chain C is unique.

A laminar decomposition of a vector a in RX
+ is a representation

a =
m∑

j=0

λjeAj ,

where the λj are positive real numbers, and A0 < A1 < · · · < Am is a
laminar family of non-empty antichains in P .

Theorem 8.5.2 Let P be any poset. Every vector a in RX
+ has a unique

laminar decomposition

a =
m∑

j=0

λjeAj .

Furthermore, a ∈ C(P) if and only if
∑m

j=0 λj ≤ 1.

Before we give a formal proof, let us examine a simple example. In Fig-
ure 8.2, we see a small poset and an element a of its chain polytope. The lam-
inar decomposition is obtained by successively giving “weight” minx∈Min(P) ax

to the antichain of minimal elements, and removing at each stage any ele-
ments whose coefficients have become zero. So we take A0 = {x, y} with
weight λ0 = 0.2, delete y, and decrement ax by 0.2. Then we give weight
λ1 = 0.1 to A1 = {x,w}, and delete both x and w. Finally we give weight
λ2 = 0.6 to A2 = {z}, and delete z. In this example, we used three an-
tichains rather than the normal four because of the coincidence that two
elements were removed simultaneously. If we were to perturb ax or aw, we
would also need to include either {x} or {z, w} in our laminar family with
positive weight.

The proof below amounts to saying that this process always works, and
that we never have any choice.
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Proof To establish the existence and uniqueness of the laminar decompo-
sition, we proceed by induction on n = |X|. The result is trivial for the
one-element poset.

Suppose the result is true for all posets with fewer than n elements. Let
P be a poset on a ground-set X of size n, and take any vector a ∈ RX

+ .
If there is some element x of X with ax = 0, then we can delete x from

the poset, keeping all other ay as before, and apply the induction hypothesis
to P− x.

Otherwise note that, in any laminar family, there is some minimal element
of P that only appears in the antichain A0 = Min(P). (This is the bottom
element of the corresponding linear extension.) This tells us that any lami-
nar decomposition of a must have A0 = Min(P) and λ0 = minx∈Min(P) ax.

Now we set x1 to be some minimal element of P with ax1 = λ0, delete x1

from P, and set

a′x = ax − λ0e
A0
x ,

for each x 6= x1. We apply the induction hypothesis to a′, obtaining that
this vector has a unique laminar decomposition.

It’s clear that a laminar decomposition
∑m

j=1 λjeAj of a′ yields a laminar
decomposition

λ0eA0 +
m∑

j=1

λjeAj

of a, and vice versa. So there is a unique laminar decomposition of a, and
we are done by induction.

For the final statement, suppose that a =
∑m

j=0 λjeAj is the laminar de-
composition of a ∈ RX

+ . We see that, for any chain C,
∑

x∈C ax ≤
∑m

j=0 λj ,
with equality if C hits all of the Aj . Therefore, by Proposition 8.5.1,∑

x∈C ax ≤ 1 for all chains C if and only if
∑m

j=0 λj ≤ 1, as claimed.

The following is a restatement of the situation when a ∈ C(P).

Corollary 8.5.3 Every element a of C(P) has a unique representation as a
convex combination

a =
m∑

j=0

λjeAj ,

where
∑m

j=0 λj = 1, each λj is positive, and (A0, . . . , Am) is a laminar family
of antichains in P.
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Proof The difference between the above convex representation and the lam-
inar decomposition is that we are now required to have the λj sum to 1, but
we are now permitted to introduce a term 0 = λe∅ (λ > 0), which clearly
enables us to accomplish this. (Recall that the empty set is the maximum
element in the antichain lattice.)

For example, the vector illustrated in Figure 8.2 above can be written as
the convex combination

0.2eA0 + 0.1eA1 + 0.6eA2 + 0.1e∅.

As promised in the previous section, this result implies that C(P) is the
convex hull of the indicator vectors of antichains in P. But it has much
wider implications than that, as we are about to see.

8.6 Stanley’s Theorem

We are now ready to state and prove a theorem first proved by Richard
Stanley in 1986 [99].

Theorem 8.6.1 For any n-element poset P,

Vol(C(P)) =
e(P)
n!

.

Proof For each linear extension ≺, take the corresponding maximal laminar
family (A0, . . . , An), and let T (≺) be the convex hull of eA0 , . . . , eAn .

As we saw in Corollary 8.5.3, every vector in C(P) has a unique repre-
sentation as a convex combination of indicator vectors of antichains in a
laminar family.

Convex hulls of sets of fewer than n+1 vectors have measure 0, so, for
almost all vectors a in C(P), the laminar family used to represent a is
maximal. In other words, apart from a set of measure zero, each vector
a ∈ C(P) lies in exactly one of the simplices T (≺).

Of course, each T (≺) is contained in C(P). To complete the proof, it
suffices to check that each simplex T (≺) has volume 1/n!.

Given a linear extension ≺: x1 ≺ x2 ≺ · · · ≺ xn, recall that antichain Aj

consists of the minimal elements among {xj+1, . . . , xn}. We start with eAn

and introduce the other vectors in reverse order. The vectors eAj , . . . , eAn

all lie in the flat {a ∈ RX : ax1 = · · · = axj = 0} of RX . The next
antichain Aj−1 includes xj but none of x1, . . . , xj−1, so the vector eAj−1 sits
at height 1 above the flat containing the convex hull of {eAj , . . . , eAn}. So
the volume of the convex hull of {eAj−1 , eAj , . . . , eAn} is 1/(n− j+1) times
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Fig. 8.3. A vector in O(P) and the corresponding vector in C(P).

the volume of the convex hull of {eAj , . . . , eAn}. Therefore the volume of
T (≺) is

∏1
j=n 1/(n− j + 1) = 1/n!.

Another way to carry out this proof is to give a measure-preserving bijec-
tion between O(P) and C(P). Inevitably, this is done by mapping O(≺) to
T (≺) for each linear extension ≺ of P . If x1 ≺ · · · ≺ xn, then O(≺) is the
convex hull of the indicator vectors of the up-sets Uj = {xj+1, . . . , xn}, for
j = 0, . . . , n. So it is natural to construct our map from O(P) to C(P) by
mapping eU to eMin(U) for each up-set U , and interpolating linearly inside
each simplex O(≺).

This map can be described explicitly as follows: given a vector a in O(P),
set bx = ax if x is minimal, and bx = ax −maxy<x ay for all other x. One
can easily verify directly that this defines a bijection from O(P) to C(P):
the inverse map is defined by ax = maxC

∑
y∈C by, where C runs over all

chains in P with top element x. One can see immediately that the map is
measure-preserving by noting that the matrix representing its action on any
O(≺) (coordinates in the order given by ≺) is upper-triangular with 1s on
the diagonal, so has determinant 1.

The simple example in Figure 8.3 shows this map in operation.

8.7 Antiblockers and the Antichain Polytope

We have now related the number of linear extensions of a poset to the volume
of the chain polytope, which is a convex corner (convex compact down-set
of full dimension) in RX

+ .
The antiblocker of a convex corner K in RX

+ is the body

K∗ = {b ∈ RX
+ : b · a ≤ 1 for every a ∈ K}.

It’s easy to check that K∗ is also a convex corner.
It’s immediate that K ⊆ K∗∗ = (K∗)∗. To see the converse, take any a in

RX
+ \ K. As K is compact and convex, there is some hyperplane separating

a from K; as K is a down-set, its normal can be taken to have non-negative
coefficients. This means that there is some vector u ∈ RX

+ such that u ·c ≤ 1
for all c ∈ K, while u · a > 1. But then u ∈ K∗, so a /∈ K∗∗. Therefore
K∗∗ = K.
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The notion of an antiblocker is valuable in combinatorial optimization,
and it also arises in the study of finite-dimensional normed spaces. To see
the connection, define, for K a convex corner in Rn

+, the enlargement E(K)
of K to be the body {a ∈ Rn : (|a1|, |a2|, . . . , |an|) ∈ K}: E(K) is the set
of points that can be obtained by repeatedly reflecting a point of K in the
coordinate planes. The fact that K is a convex corner is exactly what is
required to ensure that E(K) is the unit ball of some norm on Rn. The
enlargement E(K∗) is then the unit ball of the dual norm.

What is the antiblocker of the chain polytope? Let’s ask the more general
question: what is the antiblocker of the stable set polytope of a graph G?
Recall that the stable set polytope S(G) of G is the convex hull of indicator
vectors eS of stable sets S. For a vector a to be in S(G)∗, it is necessary
and sufficient that a · eS ≤ 1 for all the vertices eS , i.e., that

∑
x∈S ax ≤ 1

for all stable sets S. Translating, this means that S(G)∗ = FS(Gc), the
fractional stable set polytope of the complement of G. We deduce also that
FS(G)∗ = S(Gc).

We know that the chain polytope of a poset P is equal to both S(Comp(P))
and FS(Comp(P)). So its antiblocker is equal to both FS(Incomp(P)) and
S(Incomp(P)). Explicitly, the antiblocker of the chain polytope is the con-
vex hull of the indicator vectors of chains, and it is also given by

{b ∈ [0, 1]X :
∑

x∈A

bx ≤ 1 for all antichains A of P}.

This polytope is called the antichain polytope A(P) of P.

Sidorenko’s Inequality, Theorem 8.1.2, says that the vector b defined by
bx = e(P − x)/e(P) is in A(P). Showing the existence of the flow in that
proof was tantamount to showing that b is a convex combination of indicator
functions of (maximal) chains.

Let’s take this a little further, and prove another result from Sidorenko’s
gem of a paper [99].

Theorem 8.7.1 Suppose P1 = (X,P1), P2 = (X,P2), P3 = (X,P3) are
three posets on the same ground-set X such that Comp(P1) ∩ Comp(P2) ⊆
Comp(P3). Then e(P1)e(P2) ≥ e(P3).

Proof We work by induction on n, the result being trivial for n = 1.
Suppose that the result is true whenever the common ground-set has fewer

than n elements. Take any posets P1, P2 and P3 as above, with a common
ground-set X of n elements.
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We start by noting that

e(P3) =
∑

x∈Min(P3)

e(P3 − x) ≤
∑

x∈Min(P3)

e(P1 − x)e(P2 − x),

by the induction hypothesis, as Comp(P1−x)∩Comp(P2−x) ⊆ Comp(P3−
x).

Now we define a vector a ∈ [0, 1]X by setting ax = e(P1 − x)/e(P1) for
x ∈ Min(P3), and ax = 0 otherwise. We claim that a ∈ C(P2). To show
this, let C be any chain in P2, and consider

∑

x∈C

ax =
∑

x∈C∩Min(P3)

e(P1 − x)
e(P1)

.

The set A = C∩Min(P3) is an independent set in Comp(P3) and a clique in
Comp(P2). By assumption, A is therefore an independent set in Comp(P1),
i.e., an antichain in P1. By Theorem 8.1.2,

∑
x∈A e(P1 − x) ≤ e(P1), and

so we indeed have that a ∈ C(P2).
Also by Theorem 8.1.2, this time applied to P2, we have that the vector

b defined by bx = e(P2 − x)/e(P2) is in A(P2), and therefore a · b ≤ 1.
Translating, we have:

e(P3) ≤
∑

x∈Min(P3)

e(P1 − x)e(P2 − x) =
∑

x∈X

axe(P1)bxe(P2) ≤ e(P1)e(P2).

This completes the proof.

This theorem (and proof) can be generalized in several different ways, but
we will settle for the form above, and the following simple application.

Corollary 8.7.2 Let L1, L2 and L3 be three linear orders on the set X.
Then e(L1 ∩ L2)e(L2 ∩ L3) ≥ e(L1 ∩ L3).

Hence the function ρ(L1,L2) = log e(L1 ∩ L2) is a metric on the set of
linear orders of X.

Proof All we need to check is that, if two elements are comparable in both
L1 ∩ L2 and L2 ∩ L3, then they are comparable in L1 ∩ L3.

8.8 Bounds on e(P) from the antichain polytope

Theorem 8.8.1 Let P = (X,P ) be any poset, and let b be any vector in
A(P). Then e(P) ≤ ∏

x∈X 1/bx.
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Proof We know that the chain polytope C(P) is contained in {a ∈ RX
+ :

a·b ≤ 1}. This is a standard simplex, with a vertex on the x-axis at distance
1/bx from the origin, so it has volume

1
n!

∏

x∈X

1
bx
.

So, by Stanley’s Theorem, e(P) = n! Vol(C(P)) ≤ ∏
x∈X 1/bx, as claimed.

There is a second amusing proof of this result, using absolutely none of
the theory we have developed.

Proof Consider the following random procedure for building a linear ex-
tension of P from the bottom up. At each stage, from the set of available
elements, choose the next element to be x with probability proportional
to bx.

Now consider any single linear extension ≺ of P, say x1 ≺ x2 ≺ · · · ≺ xn.
The probability that our random procedure results in ≺ is exactly

n∏

j=1

bxj∑
y∈Aj

by
,

where Aj is the set of elements minimal among {xj , . . . , xn}. Since the Aj

are antichains, and b ∈ A(P), each sum
∑

y∈Aj
by is at most 1, and so the

probability of ≺ is at least
∏n

j=1 bxj =
∏

x∈X bx, a quantity independent
of ≺.

We conclude that the number of linear extensions is indeed at most∏
x∈X 1/bx.

Theorem 8.8.1 gives us a family of upper bounds on the number of lin-
ear extensions of a poset P, one for each vector in the antichain polytope.
Identifying the best of these bounds amounts to maximizing

∏
x∈X bx, for

b ∈ A(P).
For a convex corner K in RX

+ , set

V (K) = max
a∈K

∏

x∈X

ax,

and call any vector a achieving this maximum an optimal point of K. This
parameter V (K) is closely related to the entropy H(K) of K; specifically
V (K) = 2−nH(K). What we saw in Theorem 8.8.1 is that Vol(K) ≤ 1/(n!V (K∗)).

We’ll discuss the practical side of the problem of finding V (K) in Sec-
tion 8.12. From a theoretical standpoint, the following result of Csiszar,
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Körner, Lovász, Marton and Simonyi [99] gives us a very clean method to
verify that we have a solution.

Proposition 8.8.2 For any antiblocking pair (K,K∗) of convex corners in
RX

+ , the pair a ∈ K, b ∈ K∗ are optimal points of their respective polytopes
if and only if axbx = 1/n for each x ∈ X.

Therefore V (K)V (K∗) = 1/nn.
In particular, every convex corner has exactly one optimal point.

Proof Suppose a ∈ K and b ∈ K∗. Then
( ∏

x∈X

axbx

)1/n

≤ 1
n

∑

x∈X

axbx ≤ 1
n
.

The first inequality above is the inequality of the arithmetic and the geo-
metric mean; equality holds if and only if all the terms axbx are equal. This
shows that V (K)V (K∗) ≤ 1/nn; if equality is achieved, then the optimum
points a and b satisfy axbx = 1/n for each x ∈ X.

All that remains to be shown is that there are vectors a, b in K and K∗
respectively with axbx = 1/n for every x ∈ X.

Suppose a is an optimal point of K. The normal vector to the surface
{c :

∏
x∈X cx = V (K)} at the point c = a is in the direction of b, where

bx = 1/(nax). So the convex body K lies under the tangent hyperplane
{c : c · b = 1}. This means that b is in K∗, as required.

A consequence is the following result, due to Kahn and Kim [99].

Corollary 8.8.3 For any poset P, n!V (C(P)) ≤ e(P) ≤ nnV (C(P)).

Proof If a is the optimal point of C(P), then certainly C(P) contains the
box with top point a, of volume V (C(P)), so the lower bound follows from
Theorem 8.6.1, Stanley’s Theorem.

The upper bound is obtained by combining Theorem 8.8.1 and Proposi-
tion 8.8.2: e(P) ≤ 1/V (A(P)) = nnV (C(P)).

8.9 2-Dimensional Posets

Normally, there is no particular interpretation of the volume of the antichain
polytope. However, in the special case where the poset P has dimension 2,
the antichain polytope of P is just the chain polytope of any complement P
of P.
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There is a trade-off: the larger C(P) is, the smaller A(P) = C(P). Al-
ternatively, the larger e(P) is, the smaller e(P). What can we say about
e(P)e(P)? Bounds on this product can be obtained by combining Proposi-
tion 8.8.2 and Corollary 8.8.3, but we can do better.

For a start, we can apply Theorem 8.7.1 with P1 = P, P2 = P, and P3

an antichain: we get the following result, due again to Sidorenko [99].

Theorem 8.9.1 For P = (X,P ) a 2-dimensional poset with |X| = n,

e(P)e(P) ≥ n!.

This is best possible, as can be seen by taking P and P to be a chain and
an antichain. See Exercise 9 for a much wider class of extremal examples,
namely all series-parallel posets.

In fact, the lower bound above holds in a much more general context.

Theorem 8.9.2 (Saint-Raymond’s Theorem) For K a convex corner
in Rn

+,

Vol(K)Vol(K∗) ≥ 1/n!.

This result implies Theorem 8.9.1 via Stanley’s Theorem, taking K to be
the chain polytope of P and therefore K∗ to be the chain polytope of P.
The extreme cases of Saint-Raymond’s Theorem are known, and turn out
to be, up to scaling, exactly the chain polytopes of series-parallel orders.

The best known upper bound on the product e(P)e(P) is again a conse-
quence of an extremal theorem from the geometry of Rn.

Theorem 8.9.3 (Santaló’s Theorem) For B the unit ball of a norm on
Rn, and B◦ the unit ball of the dual norm,

Vol(B) Vol(B◦) ≤ Vol(B2)2,

where B2 is the unit ball of the `2 (Euclidean) norm on Rn.

Corollary 8.9.4 For P a 2-dimensional poset with n elements, and P any
complement,

e(P)e(P) ≤ (1 + o(1))n!
(π

2

)n
√

2
πn

.

Proof We apply Santaló’s Inequality to the enlargement E(K): the right-
hand quantity is an estimate for the volume of the intersection of the Eu-
clidean unit ball with the positive quadrant.
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This bound seems unlikely to be close to best possible. Bollobás, Brightwell
and Sidorenko [99] show that the supremum

sup
P a dimension-2 poset

(
e(P)e(P)

n!

)1/n

is at least some constant ψ ' 1.123, which is some way short of π/2.

8.10 LYM Posets

In Chapter 9.99, we studied ranked posets, and picked out the class of
Sperner posets and LYM posets as being of special interest. Here we see
how the LYM condition manifests itself in the context of this chapter.

Let P = (X,P ) be a ranked poset with ranks A1, A1, . . . , Ah of sizes (rank
numbers) n1, n2, . . . , nh respectively. So each maximal chain is of the form
x1 < x2 < · · · < xh, where xi ∈ Ai for i = 1, . . . , h.

We define the weight wx of an element x ∈ Ai to be 1/ni, and the weight
w(Y ) of a set Y ⊆ X to be the sum

∑
x∈Y wx of the weights of its members.

The LYM condition is that the weight w(A) of any antichain A of P is at
most 1. (Note that equality is achieved for each of the ranks Ai.) A LYM
poset is one satisfying the LYM condition.

We saw in Chapter 9.99 that the subset lattice 2t is a LYM poset. More
generally, it is known [99] that Cartesian products of chains are LYM posets.

The LYM condition should look familiar: it says exactly that the weight
vector w is in the antichain polytope!

In fact, w is always the optimal point of the antichain polytope. To
see this, define u by setting ux = ni/n for each x ∈ Ai; for any maximal
chain C,

∑
x∈C ux =

∑n
i=1(ni/n) = 1, so u is in the chain polytope and

uxwx = 1/n for each x ∈ X. By Proposition 8.8.2, this means that w is the
optimal point of A(P) (and u is the optimal point of C(P)). Thus we have
V (A(P)) =

∏
x∈X wx =

∏h
i=1(1/ni)ni .

In 1974, Kleitman [99] proved that the LYM condition was equivalent to
various others, one of which is the existence of a regular covering of P by
chains, i.e., a non-empty collection of maximal chains such that, for each i,
every element of rank i occurs in the same number of chains. A moment’s
thought reveals that this says that the vector y given by yj = 1/ni for j ∈ Ai

can be written as a convex combination of indicator vectors of chains—the
polyhedral theory assures us that this is equivalent to y being in A(P),
which is exactly the LYM condition.

Let’s turn to the problem of estimating the number of linear extensions
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of a LYM poset. Before applying the theory developed in this chapter, let
us see what is trivial.

So, let P be a ranked poset with ranks A1, . . . , Ah of sizes n1, . . . , nh. To
begin with, a LYM poset is Sperner, so we have the upper bound e(P) ≤
width(P)n = (maxh

i=1 ni)n.
We also have the lower bound

e(P) ≥
h∏

i=1

ni!, (8.2)

as this is the number of linear extensions in which all of rank Ai comes below
all of rank Ai+1, for each i.

In many cases, these trivial bounds are not too far apart; for instance, if
P = 2t, the two bounds turn out to differ by a factor of roughly e3n/2. For
many purposes, this is actually quite a narrow range.

The following improvement on the trivial upper bound is instant from
Theorem 8.8.1, using the fact that the weight vector w is in the antichain
polytope. (As w is the optimal point, this is always the best bound available
via this method.)

Theorem 8.10.1 Let P be a LYM poset, with rank numbers n1, . . . , nh.
Then

e(P) ≤
h∏

i=1

nni
i .

This upper bound is now within a factor of en of the trivial lower bound
for all LYM posets.

For general LYM posets, one can’t hope to do much better than the up-
per bound in Theorem 8.10.1. The disjoint union Q(m,h) of m chains of
height h is a LYM poset with n = mh elements, and e(Q(m,h)) = n!/h!m ≥
mn(2πh)−m/2, while our bound is simply e(Q(m,h)) ≤ mn.

However, for specific LYM posets of interest, the upper bound in Theo-
rem 8.10.1 turns out not to be particularly tight. To have some perspective,
we write, for a LYM poset P with rank-sizes n1, . . . , nh summing to n,
e(P) = qn

∏h
i=1 ni!. So we are interested in determining, for specific families

of LYM posets P, where in the range [1, e] the parameter q = q(P) lies.
The most obvious special case is that of the subset lattice 2t: Brightwell

and Tetali [99] prove the following result.
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Fig. 8.4. A Young tableau of shape (4,2,2,1), and the hook H21 of length 4.

Theorem 8.10.2

e(2t) ≤
t∏

i=0

(
t

i

)
exp

(
2t 6 log t

t

)
.

Translating, this means that q(2t) ≤ 1 + O(log t/t), as t → ∞. In other
words, it is the trivial lower bound that is close to the truth. Brightwell and
Tetali actually prove a more general result, showing (very roughly) that a
height-h LYM poset P with q(P) much above 1 has to be extremely sparse,
with each element above at most about log h elements in the rank below.

8.11 Linear Extensions of the Grid: Young Tableaux and the
Hook Formula

One interesting LYM poset that is sparse is the 2-dimensional grid, i.e., the
product of two chains. Counting the linear extensions of the grid turns out
to be a well-known problem, with a remarkable solution, in disguise.

For a positive integer n, let λ = (λ1, . . . , λm) be a partition of n, i.e., a non-
increasing sequence of positive integers summing to n. The Young diagram
or Ferrers diagram X(λ) of shape λ is an array of cells xi,j , for i = 1, . . . ,m,
j = 1, . . . , λi. The diagram is traditional drawn as in Figure 8.4, so that
there are m rows, the largest at the top.

A Young tableau of shape λ is an assignment of the integers 1, . . . , n to the
cells in the diagram of shape λ so that all rows and columns form increasing
sequences; see Figure 8.4.

It is apparent that a Young tableau of shape λ is just a linear extension
of a particular poset Y(λ) on the set X(λ) of cells, namely that obtained
by putting xij ≤ xk` if i ≤ k and j ≤ `. (Warning: the minimum of Y(λ)
is in the top left corner of the diagram.) Such a poset is a down-set in the
grid [m]× [λ1]. The grid is a LYM poset, though Y(λ) need not be.

Remarkably, e(Y(λ)), the number of Young tableaux with shape λ, has
an exact formula. For a cell (i, j), the hook Hij consists of the cells that are
either below (i, j) in column j or to the right of (i, j) in row i, along with
(i, j) itself. The hook length hij is the number of cells in the hook Hij . A
typical hook, of length 4, is shown in Figure 8.4.
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We are now able to state the famous result of Frame, Robinson and
Thrall [99].

Theorem 8.11.1 (The Hook Formula) For any partition λ of n,

e(Y(λ)) =
n!∏

(i,j)∈X(λ) hij
.

It is natural to think that there should be a proof of Theorem 8.11.1
proceeding by defining independent events A(i, j) in the space of all linear
orders ≺ on [n], with Pr(A(i, j)) = 1/hij , and so that ≺ is a linear extension
of Y(λ) if and only if all the A(i, j) occur. But no such proof is known, and
indeed there are no truly simple and explanatory proofs.

For the particular case of the m×m grid Gm, the hook formula yields

e(Gm) =
m2!∏m

i=1 i
i
∏m−1

i=1 (2m− i)i
,

and the right hand side can be approximated as

mm2

(√
e

4
+ o(1)

)m2

,

whereas the trivial lower bound works out to mm2
e−

3
2
m2+o(m2), so q(Gm) →

e2/4 as m → ∞. It is interesting to note that this number is below e even
for such a sparse LYM poset.

8.12 #P-completeness

For the rest of this chapter, we’ll turn our attention to the computational
question associated with e(P): given a poset P, how easy is it to count, or
estimate, the number e(P) of linear extensions? It is easy to see that the
algorithm suggested by (8.1) takes exponential time in general, but what
can be done in polynomial time?

We start with a negative result, due to Brightwell and Winkler [?]:

Theorem 8.12.1 Computing e(P) is a #P-complete problem.

The complexity class #P is the “counting” equivalent of NP. The count-
ing versions of all the most familiar NP-complete problems are complete for
#P, so that a polynomial time algorithm for any one of them would entail
a polynomial time algorithm for every problem in #P. This is regarded as
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Fig. 8.5. The poset Q. The ovals represent antichains of size p−1. Only the clause
elements for the clause c = xy are shown.

highly implausible: a polynomial time algorithm for a #P-complete prob-
lem would imply not just P=NP, but the collapse of the entire polynomial
hierarchy.

Proof (Sketch) We’ll give just the main ideas of the proof, sliding over all
the details and technicalities. The reader is invited to fill in all the gaps in
Exercise 15.

The plan is to show that an oracle for counting linear extensions of posets
can be used to calculate the number N(F ) of satisfying assignments of a
2-SAT formula F : this latter problem is known to be #P-complete.

Let us suppose then that we are given a 2-SAT formula F , i.e., a set of m
variables and a set of n clauses, each containing exactly two literals (either
a variable x or its negation x). We wish to count the number N(F ) of
satisfying assignments, i.e., the assignments of True/False to each variable
so that each clause contains a True literal (a negated literal is True if and
only if the corresponding variable is False). The first observation is that it
is enough to count N(F ) modulo p, for many different primes p.

Given F and a large prime p, we form the poset Q = QF (p) as in Fig-
ure 8.5. In this Figure, the ovals represent antichains of size p−1; there is
one antichain Ux for each variable x, one antichain Vc for each clause c, and
one extra antichain U0, V0 of each type. There are two special elements a
and b, and elements x and x for each variable x, which we identify with the
literals. There are four clause elements c1, . . . , c4 of Q for each clause c: if x
and y are the two variables involved in c, then one of these four elements is
placed above each of the four pairs (x, y), (x, y), (x, y), (x, y), as shown. Only
the clause element corresponding to the two literals in c is placed above the
special element b.

For any partition (A,B,C) of the elements other than a and b, let E(A,B,C)
be the set of linear extensions ≺ of Q in which A ≺ a ≺ B ≺ b ≺ C. Note
that |E(A,B,C)| = e(QA)e(QB)e(QC).

Suppose A does not contain either x or x, for some variable x. Then
the elements of Ux ∪ U0 are all isolated in QA, so e(QA) is divisible by
(2p−2)!, and thus by p. On the other hand, suppose that A contains at least
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one of each pair of literals, and k complete pairs (0 ≤ k ≤ n). Then (see
Exercise 14):

e(QA) =
(np+ p− 1 + k)!
pn((p+1)/2)k

,

which is divisible by p if k > 0. If k = 0 and p > n, then e(QA) is not
divisible by p.

So, if p does not divide e(QA), then A contains exactly one of each pair of
literals. The reader familiar with reductions from SAT will recognize this as
one of the main levers: a choice of one of each pair of literals corresponds to
a truth assignment—here it turns out that we need to regard the literals in A
as being set to False—and we can restrict attention to partitions (A,B,C)
in which A does encode a truth assignment, as all other choices do not
contribute modulo p.

In a similar way, one can show that, if p does not divide e(QB), then B

contains no literal, and exactly one clause element for each clause. Given A,
when is there such a B? For the clause c = xy illustrated in Figure 8.5, if
one of (x, x) and one of (y, y) are pushed up into C, then three of the four
clause elements ci are pushed up with them. Thus there is just one ci that
could be in B, provided that c2 is one of the three elements pushed up, in
other words, provided that the set of literals in C includes one appearing
in the clause c, which in turn means that the encoded truth assignment
satisfies the clause c.

Generally, let S be the set of partitions (A,B,C) such that: E(A,B,C)
is non-empty, each pair of literals has one element in A and the other in
C, and each clause has one of its elements in B and the other three in C.
Arguing as above, we see that S is in 1-1 correspondence with the set of
satisfying assignments of F .

Finally, for each partition (A,B,C) ∈ S, e(QC) is a fixed poset Q0,
independent of p. Provided p is large enough and does not divide e(Q0), we
then have that |E(A,B,C)| is equal to some fixed and readily calculable k,
for all (A,B,C) ∈ S, and that e(Q) = k|S| = kN(F ), modulo p. So, if we
have a method of finding e(Q), we can also find N(F ), modulo p, for all but
a few primes p, as required.

A consequence of this result, together with the fact that e(P) = Vol(O(P)),
is that computing the exact volume of an n-dimensional polytope is #P-
hard, even if the polytope is specified by at most quadratically many in-
equalities of the form aj − ai ≥ 0. It is also known that counting the
number of up-sets in a partial order is #P-hard, and again this gives as a
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consequence that counting the vertices of an n-dimensional polytope is hard,
even in these very special and apparently benign circumstances.

Theorem 8.12.1 shows that it is hard to compute e(P) in general, but one
can still ask about special classes of posets. For instance, if P happens to be
an up-set in a grid poset, then the hook formula of Section 8.11 enables us to
calculate e(P) efficiently. If we have a bound on the width of P, then again
there is a polynomial time algorithm to compute e(P) (see Exercise 13).
One final class for which there is a polynomial time algorithm is the class
of posets whose covering graph is a tree; see Atkinson [99]. Brightwell and
Winkler [99] indicate how to adapt their proof of Theorem 8.12.1 to show
that it is #P-complete to compute e(P) for posets P of height 3, but it is an
open (and intriguing) problem whether the problem is still hard for posets
of height 2.

8.13 Randomized Approximation Algorithms

In the previous section, we showed that computing e(P) exactly is hard,
and deduced that computing volumes of polytopes exactly is hard. Going
the other way, there are celebrated positive results about approximating the
volume of a convex polytope, starting with the seminal paper of Dyer, Frieze
and Kannan [99], and of course these immediately yield positive results
about approximating the number of linear extensions of a partial order.

Instead of discussing these results, we shall focus on a variant tailored
specifically to the problem of counting linear extensions. Our account follows
that of Karzanov and Khachiyan [99] from 1991.

We’ll start by considering a slightly different problem. Given P, how can
we select a linear extension (nearly) uniformly at random from P? It’s not
hard to see that, if we can solve the (approximate) counting problem in
polynomial time, then we can also solve this problem in polynomial time.
As we shall see later, the converse is also true.

There is a now well-established method for constructing an algorithm to
generate an object approximately uniformly at random from a large set S
whose size we do not know. The idea is to define a Markov chain whose state
space is S, and whose stationary distribution is the uniform distribution. If
the chain is ergodic (connected and aperiodic), then the distribution of the
chain after N steps converges to the uniform distribution as N → ∞; the
algorithm is simply to start at an arbitrary point of the state space, and run
the chain for sufficiently many steps.
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However, just finding a chain with the right limiting distribution is not
enough: we need to know that the chain is rapidly mixing: its convergence
to near-stationarity takes place in a small enough number of steps. It’s
important that “small enough” refers to a number of steps polynomial not
in the size of S, but (typically) in log |S|. When S = E(P), for instance,
we wish to run the chain only for a number of steps that is polynomial
in the number n of elements of P, even though E(P) is normally at least
exponential in n.

For any poset P, we define a graphGE(P) on E(P) by declaring two linear
extensions ≺ and ≺′ to be adjacent if one can be obtained from the other
by swapping a pair of consecutive elements, i.e., for some k ∈ {1, . . . , n−1},
we have x1 ≺ · · · ≺ xk ≺ xk+1 ≺ · · · ≺ xn and x1 ≺′ · · · ≺′ xk+1 ≺′ xk ≺′
· · · ≺′ xn. Let d(≺) be the degree of ≺ in GE(≺).

We define the Karzanov-Khachiyan Markov chain with state space E(P)
by specifying the transition matrix M :

m≺,≺′ =





1/(2n− 2) if ≺ and ≺′ are adjacent

1− d(≺)/(2n− 2) if ≺=≺′
0 otherwise.

This has a very natural interpretation. If we are in the state ≺: x1 ≺ x2 ≺
· · · ≺ xn, we choose, uniformly at random, an index j in {1, . . . , n−1}, and
consider the pair (xi, xi+1). If these two elements are comparable, necessarily
with xi < xi+1, then we stay at the current state. If the two elements are
incomparable, then we flip a fair coin; if it comes up Heads, we again stay
at the current state, while if it comes up Tails then we move to the state
obtained by swapping xi and xi+1.

It is fairly easy to check that the Karzanov-Khachiyan chain is connected
and aperiodic. The fact that M is symmetric means that the chain is time-
reversible and its stationary distribution is uniform. See the Exercises. If
the probability vector at represents the distribution of the state after t steps,
then we have at = M ta0. The initial distribution a0 is usually taken to be
the indicator vector of some arbitrary state.

We say that a Markov chain with symmetric transition matrixM has mix-
ing time at most τ(ε) if, for any ε > 0, any t > τ(ε), any initial distribution
a0 and any subset A of the state space S,

∣∣∣∣Pr(at ∈ A)− |A|
|S|

∣∣∣∣ < ε.
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Theorem 8.13.1 For any n-element poset P, the Karzanov-Khachiyan
Markov chain has mixing time at most n6 logn log(1/ε).

To prove this theorem, we shall invoke two results without proof, one
giving a sufficient condition for rapid mixing and the other a geometric
lemma.

What stops a Markov chain being rapidly mixing is some sort of “bot-
tleneck”: a partition of the state space S into A and Ac with only a small
probability of transitions between A and Ac. Jerrum and Sinclair [99] made
this idea precise by introducing the notion of the conductance of a Markov
chain. When the transition probabilities are mi,j and the stationary distri-
bution is uniform, the conductance of a subset A of S is given by

Φ(A) =
|S|

|A||Ac|
∑

i∈A,j∈Ac

mi,j ,

and the conductance Φ of the chain is the minimum conductance of any
non-trivial subset of S.

Theorem 8.13.2 For any Markov chain with state space S, uniform sta-
tionary distribution and conductance Φ, the mixing time is at most

1
Φ2

log |S| log(1/ε).

The following geometric result is due to Dyer and Frieze [99]. It is a strong
form of the statement that a convex body does not have a bottleneck.

Lemma 8.13.3 Let K be a convex body in Rn, with diameter D, separated
into two pieces K1 and K2 by a hypersurface H. Then

Voln−1(H) ≥ 4
D

Vol(K1) Vol(K2)
Vol(K)

.

We are now ready to prove Theorem 8.13.1.

Proof Of course, we will proceed by showing that the Karzanov-Khachiyan
Markov chain has high conductance. The underlying idea is to think of
the state space as made up of the simplices O(≺) making up the order
polytope O(P), and the chain as stepping across facets from one simplex
to a neighbor. Now, essentially, the fact that the order polytope is convex
means that there cannot be a bottleneck.
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Accordingly, let (A,B) be any non-trivial partition of E(P). The conduc-
tance of A is

Φ(A) =
e(P)
|A||B|

M

2n− 2
, (8.3)

where M is the number of edges of GE(P) going between A and B.
We consider the corresponding subsetsA =

⋃
≺∈AO(≺) and B =

⋃
≺∈B O(≺

) of the order polytope. Let H be the hypersurface separating A from B. We
now apply Lemma 8.13.3 with K = O(P), K1 = A and K2 = B, obtaining:

Voln−1(H) ≥ 4√
n

|A||B|
e(P)n!

. (8.4)

The boundary hypersurfaceH is the essentially disjoint union of sets of the
form O(≺) ∩ O(≺′), where ≺∈ A, ≺′∈ B, and ≺ and ≺′ are adjacent. The
(n−1)-dimensional volume of any such intersection is equal to

√
2/(n−1)!, as

this is just a simplex in the hyperplane where the two swapped coordinates
are equal. So

Voln−1(H) =
M
√

2
(n−1)!

. (8.5)

Combining (8.3), (8.4) and (8.5) yields

Φ(A) ≥ 4(n− 1)!√
2(2n−2)n!

√
n
≥ 1
n5/2

,

for any A, so also Φ ≥ n−5/2. The theorem now follows from Theorem 8.13.2,
using the bound log e(P) ≤ n logn.

This is probably the most straightforward and attractive approach to
proving polynomial mixing time, but the power n6 is not particularly good.
Bubley and Dyer [99], and Wilson [99] improved Theorem 8.13.1 by using
a technique called path coupling, invented by Bubley and Dyer. They prove
the following result.

Theorem 8.13.4 For any n-element poset P, the Karzanov-Khachiyan
Markov chain has mixing time O(n3 log n log(1/ε)).

We’ll indicate briefly how to use the results above to create a polynomial-
time randomized algorithm to approximate e(P). Again, we’ll just give the
basic idea, omitting the details in the calculation and not trying to get the
best known exponent in the running time.

Set P0 = P. Given Pk, we let (xk, yk) be any pair of incomparable
elements, and form Pk+1 by adding to Pk the comparability x < y and
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taking the transitive closure. We continue until we reach a linear order Pm,
and certainly m ≤ (

n
2

)
. Then

e(P) =
e(P0)
e(P1)

e(P1)
e(P2)

· · · e(Pm−1)
e(Pm)

=
m−1∏

k=0

1
Prk(xk ≺ yk)

,

where Prk(x ≺ y) is the proportion of linear extensions of Pk with xk below
yk. To estimate e(P) within a factor (1 + ε), with probability at least 1− δ,
it is thus sufficient—for some sequence of incomparable pairs (xk, yk)—to
estimate each Prk(xk ≺ yk) to within a factor (1 + εn−2), with probability
at least 1− δn−2.

Given P, and any pair (x, y) of incomparable elements, we estimate Pr(x ≺
y) by repeatedly generating nearly uniformly independent linear extensions,
and simply counting how many of them have x below y. If we take ε−2n5

nearly independent, nearly uniformly random, samples, then with very high
probability the proportion Q(x ≺ y) of samples with x below y will be
within an additive error of 1

3εn
−2 of the true probability Pr(x ≺ y). If

Q(x ≺ y) ≥ 1/2, then with very high probability it is within a multiplica-
tive constant (1 + εn−2) of the true probability, as we need: if not, then we
exchange the roles of x and y.

The best known result along these lines is the following, due to Bubley
and Dyer [99].

Theorem 8.13.5 There is a randomized algorithm, with running time O(n5ε−2 log2 n log(n/ε)),
that takes as input an n-element poset P and a positive constant ε, and out-
puts a number Q such that

Pr ((1− ε)e(P) ≤ Q ≤ (1 + εe(P))) >
3
4
.

An algorithm with these properties is called an fpras for e(P). The con-
stant 3/4 is somewhat arbitrary: a better constant can be obtained by
running the algorithm several times and taking the median of the outputs.

Exercises

8.1 What is the maximum of e(P) over all posets P with n elements and
width at most w? Compare this to the bound in Theorem 8.1.1.

8.2 What is the minimum of e(P) over all posets P with n elements and
height at most h?

8.3 Prove the first part of Proposition 8.3.1, describing the facets of the
order polytope.
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Fig. 8.6. The element x is in no cutset.

8.4 Show that the vertices of the order polytope are exactly the indicator
vectors of up-sets.

8.5 Describe all the facets of the chain polytope.
8.6 Let P be the three-element poset with ground-set {x1, x2, x3}, with

the only comparability being x1 < x2. Describe the order polytope
and the chain polytope of P, and demonstrate directly that each has
volume 1/2.

8.7 Let P be the three-element poset with ground-set {x1, x2, x3}, and
relations x1 < x2, x1 < x3. Describe the order polytope and the
chain polytope of P, and demonstrate directly that each has volume
1/3.

8.8 A cutset in a poset P is an antichain meeting every chain. Show that
the vector b defined by bx = e(P − x)/e(P) is maximal in A(P) if
and only if every element of P is in a cutset.

Suppose there is an induced subposet of P of any of the forms in
Figure 8.6. Show that x is in no cutset of P.

8.9 Recall that a series-parallel poset is one that can be obtained from
single-element posets by repeated disjoint unions and linear sums.
Show that all series-parallel posets have dimension 2.

Show that, if P is a series-parallel poset and P any complement,
then e(P)e(P) = n!.

8.10 Let P be a poset, let u be the optimal point in C(P), and let∑m
j=1 λjeAj be the laminar decomposition of u. Show that all the

Aj are maximal antichains and that
∑m

j=1 λj = 1.
Now suppose P is a ranked poset. Show that P is LYM if and only

if the Aj in the laminar decomposition of u are exactly the ranks.
8.11 Show that, in every poset P = (X,P ), there is a chain C such that

∑

x∈C

1
e(P− x)

≥ |X|
e(P)

.

8.12 Prove Theorem 8.11.1 for a partition (λ1, 1, . . . , 1).
8.13 Let Wk be the class of posets of width at most k. Show that there

is an algorithm using dynamic programming that calculates e(P)
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exactly, and runs in time O(nk+1) (or thereabouts), for all posets in
Wk.

8.14 For p an odd prime, let P = (X,P ) be a partial order consisting of: r
componentsK1,p−1 with one element above p−1 others, s components
K2,p−1 with two elements above p−1 others, and t isolated elements.
What is the probability that a uniformly randomly chosen linear
order on X is a linear extension of P? For which values of r, s and
t does p divide e(P)?

8.15 Give a complete proof of Theorem 8.12.1.
8.16 For any poset P, show that the graph GE(P) is connected. (This

means that the Karzanov-Khachiyan Markov chain is always con-
nected.) Show also that the uniform distribution on E(P ) is the
stationary distribution for the Karzanov-Khachiyan Markov chain.

8.17 In the description of Karzanov-Khachiyan Markov chain on the set
of linear extensions, why did we flip a fair coin in the case where
xi and xi+1 are incomparable? What would go wrong if we always
swapped xi and xi+1 in this case?

8.18 Suppose P is the poset k + 1, consisting of a single element x and
an incomparable chain y0 < y1 < · · · < yk−1 of k elements. Describe
the graph defined in Exercise 16 explicitly in this case. Now consider
running the Karzanov-Khachiyan Markov chain in this case, starting
from any fixed linear extension ≺0. Explain why the mixing time is
Ω(n3).

8.14 Notes and References

The theory of stable set and fractional stable set polytopes of graphs was
developed by ... . The key breakthrough, showing that the two polytopes
are equal if and only if the graph is perfect, is due to Lovász [99]. It is
easy to see that this result implies Theorem 9.99, the Weak Perfect Graph
Theorem, and indeed Lovász’s proof establishes both results together. For
much more on this topic, see Grötschel, Lovász and Schrijver [99].

Stanley’s original proof of Theorem 8.6.1 in [99] uses the Ehrhart poly-
nomial of a polytope, a polynomial whose leading coefficient is equal to the
volume.

The first paper to exploit the potential of Stanley’s Theorem was that of
Kahn and Kim [99]. Theorem 8.8.1 is just one minor aspect of the work
reported in that paper: their primary purpose was to give a deterministic
algorithm for sorting, starting from P , using O(log(e(P)) comparisons. The
existence and uniqueness of the laminar decomposition is also proved in that
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paper. The derivation we give here of Stanley’s Theorem from that result
does not seem to have appeared in print before.

The alternative, probabilistic, proof of Theorem 8.8.1 first appears in
Brightwell and Tetali [99].

Theorem 8.9.2 was first proved by Saint-Raymond [99]; there are now
several simpler proofs, including one by Meyer [?] that also gives the cases
of equality. The lower bound on e(P)e(P) in Theorem 8.9.1 was first proved
by Sidorenko [99]; the derivation given here, and the upper bound, are due
to Bollobás, Brightwell and Sidorenko [99].

Bollobás and Brightwell [99] studied the content µ(K) of a convex corner
K, defined recursively by

µ(K) = max
a∈K

n∑

i=1

aiµ(Ki),

where Ki = {b ∈ K : bi = 0}. The content can be found in various guises
elsewhere: in the paper of Sidorenko [99], and in Meyer’s proof [99] of Saint-
Raymond’s Inequality.

If K is the chain polytope of a poset P, then it follows from Sidorenko’s
Inequality that µ(K) = e(P). Bollobás and Brightwell prove, among other
things, that µ(K) ≤ n! Vol(K), with equality if (and, for K a polytope all
of whose vertices are 0-1 vectors, only if) K is the stable set polytope of
a strongly perfect graph: this extends Stanley’s Theorem. Exercise 11 is
taken from [99].

The paper of Bollobás and Brightwell also contains various generaliza-
tions of Sidorenko’s results, in particular of Theorem 8.7.1, as well as the
inequalities of Santaló and Saint-Raymond.

Corollary 8.7.2 was conjectured to us by Tuuka Ilomäki in September
2005; he was completing a Doctorate in Music at the Sibelius Academy in
Finland, and wished to compare similarities of musical objects. We haven’t
come across the inequality in the literature, and it does not seem to be at all
easy to prove directly. The properties of the Ilomäki Metric are unexplored.

The problem of estimating the number of linear extensions of the subset
lattice 2t was first raised by Richard Stanley. In 1987, Sha and Kleitman
proved the result in Theorem 8.10.1 for the special case of 2t, and this was
extended by Shastri in 1998 to LYM posets satisfying certain conditions on
the level sizes. The observation that Theorem 8.10.1 is a consequence of
Theorem 8.8.1 is made by Brightwell and Tetali [99].

The original proof by Frame, Robinson and Thrall[99] of Theorem 8.11.1
in 1954 used the representation theory of the symmetric group. There are
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now some short elementary proofs, especially that of Greene, Nijenhuis and
Wilf [99] in 1979, which also provides a straightforward mechanism for gener-
ating a random linear extension of Y(λ). There has also been much interest
in the rough structure of a typical linear extension of the grid; see Pittel
and Romik [99]b:Pittel-Romik) for some recent progress.

The first proof that there is an fpras, based on a rapidly mixing Markov
chain, for estimating the volume of a suitably presented convex body in Rn

is due to Dyer, Frieze and Kannan [99]: the authors mention in that paper
the application to counting linear extensions of a poset. There have been
several subsequent improvements to the methods, and in particular to the
bounds on the running time.

Conductance was introduced and first used to prove rapid mixing by Jer-
rum and Sinclair [99]; the basic technique has been extended since, most
recently by Kannan, Lovász and Montenegro [99].

Karzanov and Khachiyan [99] introduced their Markov chain, and gave a
proof very similar to our proof of Theorem 8.13.1, as well as the application
to counting e(P). Dyer and Frieze [99] improved their analysis, and also
gave Lemma 8.13.3: earlier work had used a weaker form. Bubley and
Dyer [99] used path coupling to show that the Karzanov-Khachiyan chain
has mixing time at most around n4, and that a slight variant of the chain
has mixing time O(n3 logn). Wilson [99] extended their analysis to show
that the Karzanov-Khachiyan chain has mixing time Θ(n3 logn).

Excellent recent accounts of the theory of rapidly mixing Markov chains
are the book of Jerrum [99], and the survey article of Dyer and Greenhill [99].


