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Abstract: Usually dimension should be an integer valued parameter. We
introduce a refined version of dimension for graphs, which can assume a
value ½ t � 1l t �, thought to be between t � 1 and t. We have the following
two results: (a) a graph is outerplanar if and only if its dimension is at
most ½2l3 �. This characterization of outerplanar graphs is closely related to
the celebrated result of W. Schnyder [16] who proved that a graph is planar
if and only if its dimension is at most 3. (b) The largest n for which the
dimension of the complete graph Kn is at most ½t � 1l t � is the number of
antichains in the lattice of all subsets of a set of size t � 2. Accordingly, the
refined dimension problem for complete graphs is equivalent to the
classical combinatorial problem known as Dedekind’s problem. This result
extends work of Hoşten and Morris [14]. The main results are enriched by
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background material, which links to a line of research in extremal graph
theory, which was stimulated by a problem posed by G. Agnarsson: Find
the maximum number of edges in a graph on n nodes with dimension at
most t. � 2005 Wiley Periodicals, Inc. J Graph Theory 49: 273–284, 2005
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1. INTRODUCTION

Let G ¼ ðV;EÞ be a finite simple graph.

Definition 1.1. A nonempty family R of linear orders on the vertex set V of a

graph G ¼ ðV;EÞ is called a realizer of G provided

ð�Þ For every edge S 2 E and every vertex x 2 X � S, there is some L 2 R so

that x > y in L for every y 2 S.

The dimension of G, denoted dimðGÞ, is then defined as the least positive integer

t for which G has a realizer of cardinality t.

In order to avoid trivial complications when the condition ð�Þ is vacuous,

throughout the remainder of the paper, we restrict our attention to connected

graphs with three or more vertices.

For those readers who are new to the concept of dimension for graphs, we

present the following elementary example.

Example 1.2. The dimension of the complete graph K5 is 4, but the removal of

any edge reduces the dimension to 3.

Proof. Consider the complete graph with vertex set f1; 2; 3; 4; 5g. Any

family of 4 linear orders fL1; L2;L3; L4g with i the highest element and 5 the

second highest element in Li for all i is a realizer. So dimðK5Þ � 4. On the other

hand, suppose dimðK5Þ � 3, and let R ¼ fM1;M2;M3g be a realizer. Without

loss of generality, 4 and 5 are not the highest element of any linear order in R.

Also, without loss of generality, 4 > 5 in both M1 and M2. Now let j be the largest

element of M3. Then, there is no element i 2 f1; 2; 3g for which 5 is over both 4

and j in Mi. The contradiction shows that dimðK5Þ ¼ 4, as claimed.

Now let e ¼ f3; 4g. The following three linear orders form a realizer of

K5 � e:

L1 ¼ ½2 < 3 < 5 < 4 < 1�
L2 ¼ ½1 < 3 < 5 < 4 < 2�
L3 ¼ ½1 < 2 < 4 < 5 < 3� &

Here is a second example. We leave its elementary proof as an exercise.

Example 1.3. The dimension of the complete bipartite graph K3;3 is 4, but the

removal of any edge reduces the dimension to 3.
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The preceding two examples help to motivate the following, now classic,

theorem of W. Schnyder [16].

Theorem 1.4. A graph G is planar if and only if its dimension is at most 3.

Schnyder’s original version of Theorem 1.4 used a slightly different concept of

dimension. With a finite graph G ¼ ðV ;EÞ, we associate a height two poset

P ¼ PG whose ground set is V [ E. The order relation is defined by setting x < S

in PG if x 2 V , S 2 E, and x 2 S. PG is called the incidence poset of G.

Schnyder proved: A graph G is planar if and only if the dimension of its

incidence poset is at most 3.

The close relationship between the dimension of a graph and the dimension of

its incidence poset can be described as follows:

Proposition 1.5. Let G be a graph and let PG be its incidence poset. Then

(1) dimðGÞ � dimðPGÞ � 1 þ dimðGÞ.
(2) dimðGÞ ¼ dimðPGÞ if G has no vertices of degree 1.

Although the preceding proposition admits an elementary proof, it can be

stated in a somewhat more general form:

Proposition 1.6. The dimension of a graph equals the interval dimension of its

incidence poset.

Graphs and incidence orders of dimension at most two are easy to characterize:

Proposition 1.7. Let G be a graph and let PG be its incidence poset. Then

(1) dimðGÞ � 2 if and only if G is a caterpillar.

(2) dimðPGÞ � 2 if and only G is a path.

We will not use the concepts of dimension and interval dimension for posets

extensively in this article, but for those readers who would like additional

information on how this parameter relates to graph theory problems, we suggest

looking at Trotter’s monograph [20] or survey articles [21], [22], and [23].

Although we do not include a proof of Schnyder’s theorem here, we pause for

some comments related to it.

The fact that graphs with dimðGÞ � 3 are planar is relatively easy to prove.

This was shown by Babai and Duffus [3]. The difficult part is to show that

dimðGÞ � 3 when G is planar. This proof required Schnyder to develop several

elegant structural results for planar graphs, and these results have interest

independent from their application to Theorem 1.4. Schnyder’s theorem has been

generalized by Brightwell and Trotter [5], [6] with the following two results.

Theorem 1.8. Let D be a plane drawing without edge crossings of a 3-

connected planar graph G, and let P be the poset of vertices, edges, and faces of
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this drawing, partially ordered by inclusion. Then dimðPÞ ¼ 4. Furthermore, the

subposet of P generated by the vertices and faces is 4-irreducible.

Theorem 1.9. Let D be a plane drawing without edge crossings of a planar

multi-graph G, and let P be the poset of vertices, edges, and faces of this

drawing, partially ordered by inclusion. Then dimðPÞ � 4.

Simplified proofs of Theorem 1.8 have been given by Felsner [10], [11].

2. OTHER COMBINATORIAL CONNECTIONS

In order to provide further motivation for the results which follow, we pause to

discuss two other recent research directions. One such theme is to determine (or

estimate) the dimension of the complete graph Kn. Note that the dimension of Kn

and the dimension of its incidence poset are the same when n � 3.

For a positive integer t, let BðtÞ denote the set of all subsets of f1; 2; . . . ; tg. A

subset A � BðtÞ is called an antichain if no two sets in A are ordered by

inclusion. We then let DðtÞ count the number of antichains.1 Starting with Dð1Þ ¼
3, the next values are: 6, 20, 168, 7781. Exact values are known for t � 8. The

evaluation (or estimation) of the function DðtÞ is popularly known as Dedekind’s

Problem [18].

We then let HMðtÞ count the number of antichains A in BðtÞ, which satisfy the

following additional property:

ð��Þ S1 [ S2 6¼ f1; 2; . . . ; tg for every S1; S2 2 A:

Starting with HM(1)¼ 2, the next values are: 4, 12, 81. These numbers arise in

several combinatorial problems [18], but here is one particularly surprising one

recently discovered by Hoşten and Morris [14].

Theorem 2.1. Let t � 2. Then HM(t � 1) is the largest n so that dimðKnÞ � t.

So it is natural to ask whether there is a connection between dimension and

Dedekind’s problem, which avoids the technical restriction ð��Þ described above.

But perhaps, there is even a more significant motivation involving minor-

monotone graph parameters—a subject that has attracted considerable attention

in the last few years. For example, let �ðGÞ denote the Colin de Verdière graph in-

variant introduced in [8]. The parameter �ðGÞ is minor-monotone. Furthermore:

(1) �ðGÞ � 1 if and only if G is a path.

(2) �ðGÞ � 2 if and only if G is outerplanar.

(3) �ðGÞ � 3 if and only if G is planar.

(4) �ðGÞ � 4 if and only if G is linklessly embeddable in 3-space.

1In this count, we include the empty antichain.
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We refer the reader to Schrijver’s survey article [17] for an extensive

discussion of the Colin de Verdi�ere invariant. However, in view of our previous

remarks, it is striking that in the list of results for this invariant, we see both a

characterization of paths and of planar graphs. So it is natural to explore the

concept of dimension of graphs to see if one can find a characterization of

outerplanar graphs, a characterization of linklessly embeddable graphs, and a

natural extension to a minor-monotone parameter. We have solved the first of

these three challenges.

3. A NEW CHARACTERIZATION OF OUTERPLANAR GRAPHS

Let L and M be linear orders on a finite set X. We say that L and M are dual and

write L ¼ Md if x < y in L if and only if x > y in M for all x; y 2 X. Reflecting on

the problem of characterizing outerplanar graphs in terms of dimension, one is

also faced with the problem of finding a number between 2 and 3, this object2 will

be denoted as ½2l3 �.
Definition 3.1. For an integer t � 2, we say that the dimension of a graph is

½ t � 1l t � if it has dimension greater than t � 1, yet has a realizer of the form

fL1;L2; . . . ; Ltg with Lt�1 ¼ Ldt .

As the reader will see, the following theorem is not difficult to prove. It is the

statement, which is a bit surprising.

Theorem 3.2. A graph G is outerplanar iff it has dimension at most ½2l3 �.

Proof. Let G be a graph and suppose that dimðGÞ � ½2l3 �. We show that G
is outerplanar. Choose a realizer fL1;L2; L3g for G with L2 ¼ Ld3. Then let H be

the graph formed by adding a new vertex x adjacent to all vertices of G. We show

that H is planar. To accomplish this, consider the family R ¼ fM1;M2;M3g of

three linear orders on the vertex set of H formed by adding x at the top of L1, the

bottom of L2, and the bottom of L3. We claim that R is a realizer of H. To see

this, let u be a vertex in H and let f be an edge not containing u as one of its

endpoints. If u ¼ x, then x is over both points of f in M1. So we may assume

u 6¼ x. If f ¼ fx; vg, with v a vertex from G and u 6¼ v, then u is over both x and v
in exactly one of M2 and M3. Finally, if f ¼ fv;wg, where both v and x are

vertices in G, then there is some i 2 f1; 2; 3g for which u is over both v and w in

Li. It follows that u is over v and w in Mi. Thus, by Schnyder’s theorem, H is

planar. In turn, G is outerplanar.

Now suppose that G is outerplanar. We show that the dimension of G is at

most ½2l3 �. Without loss of generality, we may assume that G has n � 4 vertices

and is maximal outerplanar, i.e., adding any missing edge to G produces a graph,

which is no longer outerplanar.

2In the original manuscript, we have used the fraction 5/2 for this purpose. This, however, could be confused

with the independent notion of fractional dimension (see [4], [12]).
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As before, let H be formed from G by adding a new vertex x adjacent to all

vertices of G. Then H is maximal planar. Choose a plane drawing without edge

crossings of H so that the vertex x appears on the exterior triangle. Let u1 and un
be the other two vertices on this triangle. Then, there is a natural labeling of the

vertices of G as u1; u2; . . . ; un so that fui; uiþ1g is an edge and fx; ui; uiþ1g is a

triangular face in the drawing for all i ¼ 1; 2; . . . ; n� 1. Let L2 be the subscript

order u1 < u2 < � � � < un and let L3 be the dual of L2.

Call a path ui1 ; ui2 ; . . . ; uir in G monotonic if i1 < i2 < � � � < ir. For each

integer i with 1 < i < n, note that there is a unique shortest monotonic

path Pðu1; uiÞ from u1 to ui. Likewise, there is a unique shortest monotonic path

Pðui; unÞ in G from ui to un. Then, let Si be the region consisting of all points in

the plane belonging to the closed region bounded by the edges in these two paths

together with the edge fu1; ung. By convention, we take S1 and Sn as the

degenerate region consisting of those points in the plane, which are on the edge

fu1; ung. Define a strict partial order Q on the set fu1; u2; . . . ; ung by setting

ui < uj in Q if and only if Si is a proper subset of Sj. Then let L1 be any linear

extension of Q, see Figure 1.

We claim that fL1;L2; L3g is a realizer of G. To see this, let u be a vertex of G
and let e ¼ fy; zg be an edge not containing u. We show that there is some

i 2 f1; 2; 3g for which u is over both y and z in Li. This conclusion is

straightforward except possibly when there exist integers i; j; k with 1 � i < j <
k � n so that fy; zg ¼ fui; ukg and u ¼ uj. However, in this case, it is easy to see

that u is over y and z in L1. &

4. THE CONNECTION WITH DEDEKIND’S PROBLEM

In this section, we show that our refined dimension concept for complete graphs

yields a full equivalence with the classical problem of Dedekind. Again, the proof

is not difficult, and we find the statement the real surprise.

FIGURE 1. An example for the construction. Shortest path trees for u1 and u10
are color coded. A corresponding permutation L1 is u1; u10; u3; u2; u9; u4; u8; u6;
u5; u7; x .
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Theorem 4.1. For t � 3, the largest n so that dimðKnÞ � ½ t � 1l t � is Dðt � 2Þ.

Proof. We first show that if dimðKnÞ � ½ t � 1l t �, then Dðt � 2Þ � n. Let

R ¼ fL1;L2; . . . ; Ltg be a realizer, which shows that dimðKnÞ � ½ t � 1l t �. By

relabeling, we may assume that:

(1) The vertex set of Kn is f1; 2; . . . ; ng,

(2) 1 < 2 < � � � < n in Lt, and

(3) 1 > 2 > � � � > n in Lt�1.

Now for each i; j 2 f1; 2; . . . ; ng with 1 � i < j � n, let Sði < jÞ ¼ f� 2
f1; 2; . . . ; t � 2g : i < j in L�g. Then for each i ¼ 1; 2; . . . ; n� 1, let

Ci ¼ fSði < jÞ : i < j � ng. Order the sets in each Ci by inclusion and let Ai

denote the set of maximal elements of Ci. By construction, each Ai is an antichain

in Bðt � 2Þ, in fact a non-empty antichain. Finally, set An ¼ ;.

We claim that Ai 6¼ Aj for all 1 � i < j � n. In fact, we claim that there exists

a set S 2 Ai so that S 6� T for every T 2 Aj. This is clearly true if j ¼ n. But

suppose that this claim fails for some pair i; j with 1 � i < j < n. Consider the set

Sði < jÞ. Then, there is a set S 2 Ai with Sði < jÞ � S. Suppose that there is a set

T 2 Aj so that S � T . Choose k with j < k � n so that T ¼ Sðj < kÞ. It follows

that whenever � 2 f1; 2; . . . ; t � 2g and i < j in L�, then j < k in L�. So there is

no � in f1; 2; . . . ; t � 2g for which j is over both i and k. Since j is between i and

k in both Lt�1 and Lt, it follows that R is not a realizer. The contradiction

completes the first part of the proof.

Now suppose that Dðt � 2Þ � n. We want to show that dimðKnÞ � ½ t � 1l t �.
Here we only provide a sketch of the argument, since it follows immediately from

the next lemma, a result due to Hoşten and Morris. It is also presented in

somewhat more compact form in Kierstead’s survey paper [15] and has its roots

in Spencer’s paper [19], where the asymptotic behavior of the dimension of the

complete graph is first discussed.

First, let s � 1 and let L ¼ ðS1; S2; ; S2sÞ be a listing of all the subsets of

f1; 2; . . . ; sg so that i < j whenever Si � Sj, i.e., this listing is a linear extension of

the inclusion ordering. Then, suppose that DðsÞ ¼ n and let A1;A2; . . . ;An be the

unique listing of the antichains in BðsÞ so that

For all i < j with 1 � i < j � n, if k is the largest integer in f1; 2; . . . ; 2sg so

that Sk belongs to one of Ai and Aj but not the other, then Sk belongs to Ai.

In other words, the listing of antichains is in reverse lexicographic order as

determined by the listing L. The proof of the following lemma is given in [14].

Lemma 4.2. Let s � 1, let L be a linear extension of the inclusion order on the

subsets of f1; 2; . . . ; sg and let A1;A2; . . . ;An be the antichains of BðsÞ listed in

reverse lexicographic order as determined by L . For each i and j with

1 � i < j � n, let k be the largest integer in f1; 2; . . . ; 2sg so that Sk belongs to
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one of Ai and Aj but not the other, and set Sði < jÞ ¼ Sk. Then, for each

� 2 f1; 2; . . . ; sg, the binary relation

L� ¼ fði; jÞ : � 2 Sði < jÞk [ fðj; iÞ : � 62 Sði < jÞg

is a total order on the antichains of BðsÞ.
It is easy to see that the orders fL1;L2; . . . ; Lsg together with the subscript

order and its dual form a realizer of the complete graph of size n with the vertices

being the antichains in BðsÞ. With this observation, the proof is complete. &

5. A NEW EXTREMAL GRAPH THEORY PROBLEM

G. Agnarsson [1] first proposed to investigate the following extremal graph theory

problem. For integers n and t, find the maximum number MEðn; tÞ of edges in a

graph on n vertices having dimension at most t. Agnarsson was motivated by ring

theoretic problems, which are discussed in [1] and [2].

Based on the results presented thus far, we can also attempt to find the

maximum number of edges MEðn; ½ t � 1l t �Þ in a graph on n vertices having

dimension at most ½ t � 1l t �. For small values, we know everything, since we are

just counting, respectively, the maximum number of edges in a caterpillar, an

outerplanar graph and a planar graph.

Proposition 5.1. For n � 3, MEðn; 2Þ ¼ n� 1, MEðn; ½2l3 �Þ ¼ 2n� 3, and

MEðn; 3Þ ¼ 3n� 6.

In [2], Agnarsson, Felsner, and Trotter investigated the asymptotic behavior of

MEðn; 4Þ and used Turán’s theorem [24], the product Ramsey theorem (see [13],

for example), and the Erdös/Stone theorem [9] to obtain the following result.

Theorem 5.2.

lim
n!1

MEðn; 4Þ
n2

¼ 3

8
:

The lower bound in this formula comes from the fact that any graph with

chromatic number at most 4 has dimension at most 4. So the Tur�an graph, a

balanced complete 4-part graph, has dimension at most 4. This is enough to show

that limn!1MEðn; 4Þ=n2 � 3=8.

Theorem 5.3.

lim
n!1

MEðn; ½3l4 �Þ
n2

¼ 1

4
:
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Proof. As the argument is a straightforward modification of the proof of

Theorem 5.2, we provide only a sketch. First, note that the balanced complete

bipartite graph has dimension at most ½3l4 � and has dn2=4e edges. This shows

that 1/4 is a lower bound for the limit.

Now suppose that � > 0, and G is any graph on n vertices with more than

ð1=4 þ �Þn2 edges. We show that dimðGÞ > ½3l4 � provided n is sufficiently

large. Suppose that dimðGÞ � ½3l4 � and choose a realizer R ¼ fL1;L2; L3;L4g
with L3 ¼ Ld4. From the Erdös/Stone theorem, we know that for every p � 1, G
contains a complete 3-partite graph with p vertices in each part—provided n is

sufficiently large in terms of p. Choose such a subgraph and label the three parts

as V1, V2, and V3. Using the product Ramsey theorem, it follows that if p is

sufficiently large, there exists W1 � V1, W2 � V2, and W3 � V3, with jW1j ¼
jW2j ¼ jW3j ¼ 2, so that for each i; j; k ¼ 1; 2; 3 with i 6¼ j, either all points of Wi

are under all points of Wj in Lk or all points of Wi are over all points of Wj in Lk.

Label the points so that W1 ¼ fx1; x2g, W2 ¼ fy1; y2g, and W3 ¼ fz1; z2g.

Without loss of generality, we may assume that x1 < x2 < y1 < y2 < z1 < z2 in

L3, so that z2 < z1 < y2 < y1 < x2 < x1 in L4.

Consider the vertex y1 and the edge fx1; y2g. Since y1 < y2 in L3 and y1 < x1 in

L4, we may assume without loss of generality that y1 is over both x1 and y2 in L1.

Thus y1 and y2 are over x1 and x2 in L1. Similarly, considering the vertex y2 and

the edge fz1; y1g, we may conclude that y2 is over both z1 and y1 in L2. Thus y1

and y2 are over z1 and z2 in L2.

Following this pattern, we may then conclude that z1 is over both z2 and y1 in

L1, while x2 is over both x1 and y1 in L2. It follows that the middle two points of

W1 [W2 [W3 in each of the four linear orders are y1 and y2. This is a

contradiction, since it implies that y1 is never higher than both x1 and z1. The

contradiction completes the proof. &

Remark. A previous version of this paper contained two conjectures regarding

the structure of the extremal graphs of dimension at most ½3l4 � and 4. The

conjectures where that these graphs can be obtained from complete four-partite

and bipartite graphs by adding an maximal outerplaner graph on each of the color

classes.

Both of these conjectures have been disproved recently by de Mendez and

Rosenstiehl [7]. An independent example disproving the second of the con-

jectures was brought to our attention by an anonymous referee.

6. MINOR-MONOTONE ISSUES

It follows from Schnyder’s theorem that the property of having dimension at

most 3 is minor closed, i.e., if G has dimension at most 3, then any minor of G
has dimension at most 3. However, we know no direct proof of this assertion—

other than to appeal to the full power of Schnyder’s theorem. Ideally, one would
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like to find an alternative proof of Schnyder’s theorem by combining the

following three assertions:

(1) For every n � 1, the n	 n grid has dimension at most 3.

(2) If G is a planar graph, there is some n � 1 for which G is a minor of an

n	 n grid.

(3) Every minor of a graph of dimension at most 3 has dimension at most 3.

Of course, each of these three statements is true, and simple proofs are known for

the first two. So we just want to find a direct proof of the third.

We also know that the property of having dimension at most ½2l3 � is minor

closed. However, we do not know of a simple proof of this statement either.

For t � ½3l4 �, it is easy to see that the property dimðGÞ � t is no longer

minor closed. For example, dimðKnÞ ! 1 but if we subdivide each edge, then

we obtain a bipartite graph, which has dimension at most ½3l4 �. We may then

ask whether there is an appropriate generalization of the concept of dimension,

which coincides with the original definition when t < ½3l4 � and is minor closed

when t � ½3l4 �. We could also ask whether there is any way to characterize

linklessly embeddable graphs in this framework.

7. COMPLEXITY ISSUES

Yannakakis [25] showed that testing for dimðPÞ � t is NP-complete for every

fixed t � 3. Yannakakis also proved that testing for dimðPÞ � t is NP-complete

even for height 2 posets when t � 4. However, he was not able to settle whether

testing for dimðPÞ � 3 is NP-complete for height 2 posets. This problem remains

open.

Our original definition for dimension was formulated for a graph. However, it

applies equally as well to hypergraphs. In a similar manner, we can speak of the

incidence poset PH of a hypergraph H. When G is a graph, testing for

dimðGÞ � 3 is linear, since this is just a test for planarity. A similar remark holds

when testing for dimðGÞ � ½2l3 �. When H is a hypergraph, we do not know if

testing for dimðHÞ � 3 is NP-complete. Also, we do not know whether testing

for dimðHÞ � ½2l3 � is NP-complete. We suspect that testing for dimðGÞ �
½3l4 � is NP-complete, but have not been able to settle the question.

ACKNOWLEDGMENT

The authors thank Walter D. Morris, Jr., Serkan Hoşten, and Geir Agnarsson for
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