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Abstract We study two kinds of segment orders, using definitions first proposed
by Farhad Shahrokhi. Although the two kinds of segment orders appear to be quite
different, we prove several results suggesting that the are very much the same. For
example, we show that the following classes belong to both kinds of segment orders:
(1) all posets having dimension at most 3; (2) interval orders; and for n ≥ 3, the
standard example Sn of an n-dimensional poset, all 1-element and (n − 1)-element
subsets of {1,2, . . . , n}, partially ordered by inclusion.

Moreover, we also show that, for each d ≥ 4, almost all posets having dimension
d belong to neither kind of segment orders. Motivated by these observations, it is
natural to ask whether the two kinds of segment orders are distinct. This problem
is apparently very difficult, and we have not been able to resolve it completely. The
principal thrust of this paper is the development of techniques and results concerning
the properties that must hold, should the two kinds of segment orders prove to be the
same. We also derive equivalent statements, one version of which is a stretchability
question involving certain sets of pseudoline arrangements. We conclude by proving
several facts about continuous universal functions that would transfer segment orders
of the first kind into segments orders of the second kind.
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1 Introduction

We consider the euclidean plane equipped with a standard x, y coordinate system and
say a line segment s in the plane is regular if it satisfies the following two properties:

(1) One end point of the segment is on the x-axis; and
(2) The slope of the line segment is positive.

Associated with a regular line segment s is a triple (s1, s2, s3) of real numbers with
s2 > s1 and s3 > 0 so that the “left” endpoint of s is at (s1,0) and the “right” endpoint
of s is at (s2, s3).

Farhad Shahrokhi [11] proposed definitions for two partial orders on a family of
regular line segments. These orders will be denoted by P1 and P2, respectively. They
resemble the more general segment orders introduced by Pach and Törőcsik in [10].

1.1 Segment Orders of the First Kind

Let s = (s1, s2, s3) and t = (t1, t2, t3) be regular line segments. We say that s > t in
P1 if

(i) s1 < t1;
(ii) s2 > t2; and

(iii) If x0 is a real number and the vertical line x = x0 intersects s and t at (x0, y1)

and (x0, y2), respectively, then y1 > y2.

More generally, we say that a poset P is a segment order of the first kind when
there is a function S assigning to each element u ∈ P a regular line segment S(u)

so that u > v in P if and only if S(u) > S(v) in P1. It is natural to abbreviate this
statement just by saying that P is a P1 order. Also, we call the function S a P1-
representation of P and often do not distinguish between a P1 order P and a P1-
representation of P .

A poset P is called an interval containment order when there exists a function I

assigning to each element u of P a non-degenerate closed interval [au, bu] of the real
line so that u ≤ v in P if and only if [au, bu] ⊆ [av, bv]. Segment orders of the first
kind are a natural generalization of interval containment orders.

Proposition 1.1 Every interval containment order is a P1 order.

Proof Let I be a representation of an interval containment order P . Without loss of
generality,1 we assume that all endpoints in the representation are distinct. Then the
function S defined by S(u) = (au, bu, bu −au) is a representation of P as a P1 order.

�

1.2 Segment Orders of the Second Kind

Again let s = (s1, s2, s3) and t = (t1, t2, t3) be regular line segments. We say that s > t

in P2 when conditions (i), (ii′) and (iii) are satisfied, where conditions (i) and (iii) are

1We comment that we may assume that representations are in a “general position”, whenever we are
working with a finite poset. For example, intervals may be assumed to have distinct endpoints, segments
have distinct heights and slopes, etc.
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just the same as before but now we have

(ii′) s2 < t2.

Analogously, we say that a poset P is a segment order of the second kind (abbrevi-
ated to P is a P2 order) when there is a function S assigning to each element u ∈ P a
regular line segment S(u) so that u > v in P if and only if S(u) > S(v) in P2. Now,
we will refer to the function S as a P2-representation of P .

1.3 Interval Orders

Recall that a poset P is an interval order when there is a function I associating with
each element u ∈ P a closed interval I (u) = [au, bu] on the real line so that u < v

in P if and only bu < av . Also, recall that the dual of a poset P , denoted P d , is the
poset on the same ground set with u > v in P d if and only if u < v in P . The dual of
an interval order is also an interval order.

Proposition 1.2 Every interval order is a segment order of the second kind.

Proof Let P be an interval order, and let I be a function that assigns to each u in P

an interval I (u) = [au, bu] of the real line so that u > v in P if and only if bu < av .
Without loss of generality, we may assume that the end points in the representation
I are distinct. Proceeding from left to right in the order of left endpoints, we may
lift the interval [au, bu] to form a regular segment [au, bu,hu] where the height hu is
sufficiently large so that the resulting segment overlaps any segment associated with
a point v that is incomparable with u in P and has av < au. �

1.4 Central Segment Orders

Shahroki’s original definitions were not exactly the same as presented here. In par-
ticular, he considered only regular line segments s = (s1, s2, s3) for which s1 < 0 and
s2 > 0. Accordingly, we say a regular segment s = (s1, s2, s3) is central if s1 < 0 and
s2 > 0, and we let p1 to denote the subclass of P1 consisting of posets having rep-
resentations using central segments. Posets in p1 are called central segment orders of
the first kind. Similarly, we can define p2, the class of central segment orders of the
second kind.

Of course, we have the trivial statements p1 ⊆ P1 and p2 ⊆ P2, but it is not at
all clear if these containments are proper or not. In fact, the fundamental issue of
attempting to distinguish between these four classes of segment orders will be the
principal theme of this paper.

1.5 Dimension and Shahroki’s Original Question

Recall that the dimension of a poset P , denoted dim(P ), is the least positive integer
d for which there exist d linear orders L1, L2, . . . ,Ld on the ground set of P so that
u > v in P if and only if u > v in Li for each i = 1,2, . . . , d .

In the next section, we will prove the following two results, the first of which was
known to Shahroki.
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Theorem 1.3 Every poset P with dim(P ) ≤ 3 is both a p1 order and a p2 order.

Theorem 1.4 For each d ≥ 4, almost all posets P with dim(P ) = d are neither P1
orders or P2 orders, i.e., for each d ≥ 4 and each ε > 0, there exists an integer
n0 ≥ 2d so that if n ≥ n0 then among the posets with ground set {1,2, . . . , n} the
ratio of posets that are either P1 orders or P2 orders divided by the total number of
posets is less than ε.

So the following questions of Shahroki [11] are natural:

Question 1.5 Do there exist p1 posets of arbitrarily large dimension? Do there exist
p2 posets of arbitrarily large dimension?

In the next section of the paper, we will answer Shahroki’s question affirmatively
by showing that there are posets of arbitrarily large dimension belonging to both p1
and p2.

1.6 Interval Orders

The reader should note that interval orders and interval containment orders are two
very different classes of posets. In particular, interval containment posets are just
the posets having dimension at most 2, while interval orders can have arbitrarily
large dimension. In fact, the dimension of the interval order In determined by all

(
n
2

)

intervals with integer end points in {1,2, . . . , n} is known (see [6], for example) to
satisfy the following asymptotic formula:

dim(Pn) = lg lgn +
(

1

2
+ o(1)

)
lg lg lgn.

The poset In is called the canonical interval order.
When introducing the class P2, we showed that all interval orders are P2 orders,

but the presented argument does not show that all interval orders are p2 orders.

2 Motivation and Background

Theorems 1.3 and 1.4 seem to suggest that the four classes of segment orders may
actually be the same. To provide further supporting evidence, we will also prove the
following result.

Theorem 2.1 Every interval order is both a p1 order and a p2 order.

Definition 2.2 For each n ≥ 3, the standard example Sn is the poset whose ground
set is {a1, . . . , an, b1, . . . , bn} with bi < aj in Sn if and only if i �= j . The dimension
of the standard example Sn is n, and the removal of any point lowers the dimension
to n − 1.
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Note that the standard example Sn is isomorphic to the family of all 1-element and
(n − 1)-element subsets of {1,2, . . . , n} partially ordered by inclusion.

Theorem 2.3 For each n ≥ 3, the standard example Sn belongs to both p1 and p2.

2.1 The Removable Pair Conjecture

One of the most fundamental results in dimension theory for posets is the following
inequality of Hiraguchi [8]:

Theorem 2.4 For each n ≥ 4, if P is a poset with n elements, then dim(P ) ≤ n/2.

Although several proofs of Hiraguchi’s theorem have been found over the years, the
following natural conjecture, posed by Trotter in [13], has remained open for more
than 30 years.

Conjecture 2.5 (Removable Pair Conjecture) If P is a poset on three or more points,
then P contains a pair of points whose removal decreases the dimension by at most 1.

However, combining results from the literature on dimension theory, it is straight-
forward to verify the following theorem:

Theorem 2.6 Let P be a poset on three or more points. Then P contains a pair of
points whose removal decreases the dimension by at most 1 if either of the following
conditions hold:

(1) The dimension of P is at most 3.
(2) P is an interval order.

Accordingly, the four classes of segment orders are potentially very interesting
classes to study in relation to the Removable Pair Conjecture.

2.2 Distinct Class Conjecture

Despite the evidence to the contrary presented in this paper, the authors firmly believe
that the following conjecture is true.

Conjecture 2.7 P1 �= P2, i.e., the class of central segment orders of the first kind
and the class of central segment orders of the second kind are distinct. Furthermore,
P1 �⊆ P2 and P2 �⊆ P1.

However, we believe (but are not as certain) that the following may be true.

Conjecture 2.8 p1 = P1 and p2 = P2, i.e., every segment order of the first kind is
also a central segment order of the first kind, and every segment order of the second
kind is also a central segment order of the second kind.

To support our main conjecture, we will prove a statement which says that there
is no continuous function mapping regular line segments to line segments that turns
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each P1 order into a P2 order. This statement has an important corollary which
states that there is no continuous shift insensitive universal function between p1 and
p2 (rigorous definitions will be provided later).

Since our ultimate goal is to prove P1 �= P2, the reader might think that eventu-
ally someone will construct a P1 poset with less than a hundred line segments and
show that it is not in P2. While we cannot rule out this possibility completely, the
discussion to follow will show that it is very improbable. It seems to us that a coun-
terexample (a poset belonging to one class but not the other) will be extremely large
and will require a very complicated argument to establish this fact.

3 Basic Properties of Segment Orders

Theorem 3.1 Every poset of dimension at most 3 is in both p1 and p2.

Proof Let P be a poset with dim(P ) ≤ 3. Then let L1, L2 and L3 be linear orders on
the ground set of P such that u < v in P if and only if u < v in Li for each i = 1,2,3.
Let n be the number of elements in P and set ε = 1/10n.

For each u ∈ P , let ui be the position of u in Li , counting from low to high. For
each u ∈ P , let S(u) be the regular line segment satisfying: (1) the left endpoint of
S(u) is at (−u1,0); (2) S(u) passes through (0, u2); and (3) the x-coordinate of the
right endpoint of S(u) is εu3. It is easy to see S is a representation of P as a segment
order of the first kind.

To prove that P also belong to p2, replace the third condition with (3′) the x-
coordinate of the right endpoint of S(u) is ε(n + 1 − u3). �

Proposition 3.2 For every positive integer n ≥ 3, Sn ∈ p1 and Sn ∈ p2.

Proof Let C be the quarter circle whose equation is (x − 1)2 + y2 = 4 with x ≤ 1
and y ≥ 0. Let p1,p2, . . . , pn be the points on C, such that the x-coordinate of pi

is i/(n + 1). For each i = 1, . . . , n, let ai be a line segment whose left endpoint
is of the form (x,0) for some −1 < x < 0 and right endpoint is pi . Let bi be a
segment of the tangent of C at point pi , such that its left endpoint lies on the x-
axis and its right endpoint has x-coordinate 2. Then {a1, . . . , an, b1, . . . , bn} is a p1-
representation of Sn, hence Sn ∈ p1. (See Fig. 1.)

Showing that Sn ∈ p2 is very similar, but the choice of C is slightly more com-
plicated. Let C be the arc y = ex with x ∈ [0,1]. Let p1,p2, . . . , pn be the points
on C, such that the x-coordinate of pi is i/(n + 1). For each i = 1, . . . , n, let ai be a
line segment whose left endpoint is of the form (x,0) with x < −1 and right endpoint
is pi . Let bi be a segment of the tangent of C at point pi , such that its left endpoint lies
on the x-axis and its right endpoint has x-coordinate 2. Then {a1, . . . , an, b1, . . . , bn}
is a p2-representation of Sn, hence Sn ∈ p2. (See Fig. 2.) �

On the other hand, there are many posets that are not segment orders. In fact, al-
most all posets that have dimension at least 4 belong to none of the classes of segment
orders we have discussed. The following theorem is a straightforward consequence
of the Alon–Scheinerman “degrees of freedom” technique [1].
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Fig. 1 p1-representation of Sn

Fig. 2 p2-representation of Sn

Theorem 3.3 For every d ≥ 4 and every ε > 0, there is an integer n0 so that if n ≥ n0
then among the family of all posets having ground set {1,2, . . . , n} the ratio of the
number of posets that belong to p1 ∪ p2 divided by the total number of posets is less
than ε.

Let n ≥ 3 and let Sn be the standard example. Note that the subposet determined
by {a1, a2, b1, b2} is the union of two 2-element chains, with points from one chain
incomparable with points in the other. This poset is frequently denoted 2 + 2. As is
well known, this poset characterizes interval orders. The following result is usually
credited to Fishburn [4] who was the first researcher to state and prove the result
explicitly.

Theorem 3.4 A poset P is an interval order if and only if it does not contain 2 + 2
as a subposet.

So the fact that large standard examples belong to p1 and p2 says nothing about
interval orders. Also, we noted earlier that all interval orders belonged to P2. Now
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Fig. 3 Right end points of segments and the segment assigned to [4,5]

we show more. The following proof is using ideas similar to those that are presented
in [5].

Theorem 3.5 Every interval order is in both p1 and p2.

Proof It is clearly sufficient to prove that the canonical interval order In belongs to
p1 ∩ p2 for each n ≥ 2. We first show that In ∈ p1.

Draw a quarter of a circle with radius 1 and center (1,0), as shown on the left of
Fig. 3. For every interval of In, place a point to the circle, in the way it is shown in
the figure. For every point [i, j ], if i ≥ 3, draw a half-line from the point representing
[i, j ] so that it intersects the circle between the point representing [i − 2, i − 1] and
the next point up on the circle. Drop the portion of this half-line that is under the
x-axis to create a line segment. This line segment will be assigned to the interval
[i, j ].

If i ≤ 2, draw a line segment from (0, ε) to the point representing [i, j ], where ε

is a small positive real, such that (0, ε) will be the point closest to the origin on the
x-axis of all the end points of the segments.

It is clear that the p1 ordering among these segments is the same as the interval
ordering among the intervals.

If we change the quarter circle as it is shown on the right of Fig. 3, then the same
argument gives a proof that every interval order is a p2 order. �

4 Further Goals and Motivations

We have not been able to find a p1 poset that is not p2 or vice versa. The previous
discussion shows that if there is one, it is of dimension at least 4, not an interval order
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and not a standard example. If the two classes are the same, one would expect that
there is short proof, which would be something like a nice, bijective function from
the regular line segments of R

2 to itself that maps the line segments of a p1 poset to
another set of line segments, so that it will be a p2-representation of the same poset.
Or maybe its is even true for P1 and P2. Momentarily, we will show, that at least the
latter statement is false.

From the remainder of the paper, we focus on the question as to whether p1 = p2.

Definition 4.1 A universal function is a function f : R
3 → R

3 such that

(1) For every regular segment s = (s1, s2, s3), the image f (s) = t = (t1, t2, t3) is a
regular segment; and

(2) If s and t are regular line segments, then s > t in P1 if and only if f (s) > f (t)

in P2.

When s = (s1, s2, s3) is a regular line segment and c is a real number, we let s + c

denote the regular line segment (s1 + c, s2 + c, s3). Note that s + c is just a horizontal
translation (shift) of s.

Definition 4.2 A universal function f : R
3 → R

3 is shift insensitive if for every real
number c, there exists a real number c′ so that f (s + c) = f (s)+ c′ for every regular
segment s.

The partial result that we have obtained is the following.

Theorem 4.3 There is no continuous shift insensitive universal function.

5 Assuming the Two Classes Are the Same

Throughout this section, we will be assuming that every finite segment order of the
first kind is also a segment order of the second kind—even though this is something
we do not believe to be true. Accordingly, we will consider P1 posets whose elements
are regular line segments in a representation of the first kind and that the segments are
in a general position. For an element s = (s1, s2, s3) of P , we will then let (s′

1, s
′
2, s

′
3)

be the coordinates of the regular segment corresponding to s in a representation of P

as a segment order of the second kind, with the segments again in a general position.
We will then derive some additional restrictions that we may assume are satisfied by
representation of P as a segment order of the second kind. Of course, the end goal is
to gather sufficiently many restrictions to force a contradiction.

5.1 End Point Extensions

Definition 5.1 Let P be a poset in pi with a representation Pi . We say, L is the
left linear extension of P (defined by Pi ), if L is defined by the regular ordering of
the absolute values of the x-coordinates of the left endpoints of the line segments
of Pi . Similarly, we say, R is the right linear extension of P (defined by Pi ), if R
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is defined by the regular ordering of the absolute values of the x-coordinates of the
right endpoints of the line segments of Pi .

Let L1 be the left linear extension of P (defined by P1), and let R1 be the right
linear extension of P (defined by P1). Similarly, let L2 be the left linear extension of
P (defined by P2), and let R2 be the right linear extension of P (defined by P2).

Lemma 5.2 We may assume that L2 = R1 and that R2 = Ld
1 (the dual of L1).

Proof To prove the lemma, we will first consider the poset P as a subposet of a much
larger poset Q which also belongs to P1. We will then take a representation of Q

as a segment order of the second kind and show that the segments corresponding to
elements of P must be properly positioned.

The construction of Q comes in two parts, i.e., we first put P inside Q1 and then
put Q1 inside an even larger poset Q2 = Q. With the first extension, we force an
extension in which L2 = R1. Then with the second extension, we force R2 to be the
dual of L1.

5.2 First Part

Let n = |P |. Consider a large positive m (later, it will be clear just how large m be
must be relative to n). We will add to P segments that form a copy of a standard
example Sm of dimension m. These segments will be denoted A = {a1, a2, . . . , am}
and B = {b1, b2, . . . , bm} with ai > bj if and only if i �= j . We restrict the position
of segments further as shown in Fig. 1. The elements of B are confined to a narrow
space: each of them starts after the last element of P (i.e., the left endpoints of the
elements of P are left from the left endpoints of the elements of B), and each of the
ends before the first ending element of P . Also, pi ∩ aj = ∅ for all i, j .

Additionally, we construct a set of line segments G.

G = {gS : S is a set of consecutive integers not greater than n}.
We define G so that G ‖ A, and for each S for which gS ∈ G, it holds that gS ‖ {b ∈
B : b ∈ S} but gS > {b ∈ B : b �∈ S}. Note, that this does not define how to draw the
line segments of G, but clearly, it is easy to do it (“intermix” the segments with the
elements of A). (See Fig. 4.)

Suppose that the x-coordinates of the right endpoints of the elements of
p1, . . . , p|P | are pR

1 , . . . , pR|P |. Without loss of generality, pR
1 < · · · < pR|P |. Note,

this is equivalent to the statement R1 = (p1, . . . , pn). Then the x-coordinates of the
right endpoints of the elements of A, call them aR

1 , . . . , aR
n will follow the following

rule:

aR
i = pR

j + pR
j+1

2
if i =

(
k − 1

2

)
2j for some k integer. (1)

Some aR
i are not defined by this rule (namely, iff i|2|P |); they will be such that

aR
i > pR

j for all j , but otherwise arbitrary.
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Fig. 4 Arrangement of Q1

Fig. 5 p2-representation of Sn

Now we will show that Q2 has to attain a very specific form, and so does P2.
From now on, we change the notation, and pi , ai , bi denote line segments of
the p2-representation, and we use again aL

i , aR
i for the absolute values of the x-

coordinates of the left and right endpoints of the segments. However, we maintain
the indices, so that in this way ai is the image of the original ai . (We believe that
the confusion this might cause is less than the confusion that would be caused by the
hordes of indices.)

In the following, we will study the structure of A ∪ B in the p2-representation.
Since this will be useful later, too, we state it as a separate lemma.

Lemma 5.3 Every p2-representation of Sn (standard example) has the arrangement
as in Fig. 5, with the exception of at most two pairs of line segments.
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Proof The sets A and B are the maximum antichains in Sn. A = {a1, . . . , an}, B =
{b1, . . . , bn} and ai > bj if and only if i �= j .

Hence in the representation,

aL
i > bL

j

for all i, j except maybe for one pair. Let us ignore that pair now and concentrate on
the remaining. Now let ak be such that aR

k is maximal. Then each bi < ak with i �= k,
so each bR

i > aR
k with i �= k. If we ignore ak and bk now, too, then the remaining

{
aR
i < bR

j

}
for all i, j , except for the ignored.

Still, for every i, ai ‖ bi somehow: the only way this can be is if ai ∩ bi �= ∅. So the
p2-representation must look like Fig. 5. �

We can specify an ordering on B with the aid of the left linear extension (defined
by Q2), call it L2(Q2)|B . Also, denote the linear order specified by the left linear
extension (defined by Q1) by L1(Q1)|B . We claim that if we keep ignoring the two
pairs in the previous paragraph, then either

L1(Q1)|B = L2(Q2)|B or L1(Q1)|B = (
L2(Q2)|B

)d
. (2)

To see this, pick bl and bm consecutive elements in L1(Q1)|B . We know that
m = l + 1 unless some elements were ignored between them, in which case every
i : l < i < m is an index of an ignored element. Let S = {l, . . . ,m} a set of (at least
two) integers, and consider the image of gS , call it g∗. Now g∗ > bi for all i ex-
cept for the images of bl and bm (and the ignored elements, of course). This is only
possible if the images of bl and bm are consecutive line segments in Fig. 5, or more
rigorously, the images of bl and bm are consecutive in L2(Q2)|B . So we deduced
that the consecutivity property is preserved between L1(Q1)|B and L2(Q2)|B , which
implies (2). (In fact, this is all we need the set G for.)

Note that the statement above has no consequence to the right linear extension
of B . However, it immediately implies a similar statement on the right linear exten-
sion of A. Let L2(Q2)|A be the right linear extension (defined by Q2). Then

L2(Q2)|A = (a1, . . . , an) or (an, . . . , a1). (3)

(Again, recall that we may have missing elements from these sets, but that will not
affect our argument.)

Recall that R1 = (p1, . . . , p|P |), so we need to show that L2 = (p1, . . . , p|P |).
Now recall the definition of Q1, specifically that all ai had its left endpoint left

from all pi , and the ordering of their right endpoints by (1). In particular, it implies
that p1 < ai for all i. Therefore, it must be that p1 <L2 ai for all i. Also from (1),
p2 < ai if and only if i is even, and p2 ‖ ai if and only if i is odd. Therefore, using (3),
the only possible arrangements for A in Q2 is that the even indexed left endpoints are
grouped together, and also the odd indexed left endpoints are grouped together, and
p2’s left endpoint is between the two groups. In particular, p1 <L2 p2. (See Fig. 6.)
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Fig. 6 Left endpoints of A and P in the p2-representation

We can continue this argument by considering p3, p4, and so on, in every step
concluding, that the given pj < ai if and only if i|2j−1, otherwise pj ‖ ai . So the left
endpoints of A are grouped in a manner shown in Fig. 6, and the left endpoints of P

must be between the groups. That forces an order on the left endpoints of P , namely

p1 <L2 p2 <L2 · · · <L2 p|P |. �

As a last remark, let us add that we needed all 2|P |+1 elements of A and B . If
we did not have to “ignore” elements early in the argument, then 2|P |−1 would have
been enough, but in the current situation, we had to defend us against the situation
when crucial elements, that would force ordering on P , are ignored. Using 2|P |+1

intervals ensures that there are at least 4 elements of A in every important group on
Fig. 6 (3 would have been enough, but it is just simpler to increase the exponent of
two by 1), so even if we ignore 2 of those, at least 1 is left to do its job.

5.3 Second Part

Surprisingly, repeating the techniques of the first part of the proof does not seem to
work. The ideas are somewhat simpler here, but the description of the proof is more
technical, and we heavily use the first part of the lemma.

As we mentioned earlier, in this part of the proof, we will assume that Q1 and Q2
already obey the first part of the lemma.

For every pair of incomparable line segments in P1, we will add some extra line
segments to form a portion of Q1. The configuration of the new line segments de-
pends on the configuration of the two original line segments. According to this, we
will separate several cases.

In the following cases, the two line incomparable segments will always be denoted
by r and b, and always so that the left endpoint of r is left from the left endpoint of
b in P1. We will also use the notation aL, aR for a line segment a as in the previous
section, and we will add the notation aU for the y-coordinate of the right endpoint



Discrete Comput Geom (2010) 43: 680–704 693

Fig. 7 Case 1

of a. Also, we keep the convention that we will use the same letter for the line segment
in Q2 (or specially P2) as for the line segment in Q1 (or P1) and we will make it clear
with the context which line segment is the argument about.

Using these notation and assumptions, in every case we will prove that

rL > bL in P1 �⇒ rR
0 < bR

0 in P2,

where most of the time r0 = r and b0 = b, and other times r0 �= r , but r0 has the same
relation to any other element of P1 as r , and similar statement is true for b.

Since we eventually build helpers above every pair of incomparable line segments,
this statement is going to be proven for every pair of incomparable line segments, and
therefore the second part of the lemma follows.

5.3.1 Case 1 (Fig. 7)

bR < rR and bU < rU in Q1.

Relabel r to r1 and b to b1, and add extra line segments b2, b3, r2, r3 so that bR
1 <

bR
2 < bR

3 < rR
1 < rR

2 < rR
3 and bU

1 < bU
2 < bU

3 < rU
1 < rU

2 < rU
3 and bL

1 < bL
2 < bL

3 <

rL
1 < rL

2 < rL
3 , and make sure that b2 and b3 have the same relation to every element

of the poset as b1, similarly for r2, r3 and r1.
Add 6 additional segments so that they now form S6. Also add the line segment g

so that bL
3 < gL < rL

1 and gR < bR
1 . Also g <Q ri for i = 1,2,3, and g intersects bi

for i = 1,2,3 in Q1.
Apply Lemma 5.3 to the poset induced by r1, r2, r3 and b1, b2, b3. In Q2, there

must be a pair of segments, call them r0 and b0, that intersect. Where is g in Q2?
Due to the first part of the lemma, gL < bL

0 < rL
0 . Suppose that bR

0 < rR
0 ; then, due

to g <Q r0, g cannot possibly intersect b0 in Q2, so g <Q b0, a contradiction. We
showed that rR

0 < bR
0 . (This is the only part of the proof where r may not be identical

to r0 and b may not be identical to b0.)

5.3.2 Case 2 (Fig. 8)

bR < rR and rU < bU in Q1.
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Fig. 8 Case 2

Fig. 9 Case 3

We need to add two extra line segments, g and l, so that bL < gL < rL < lL, gR <

bR < rR < lR, gU < rU < bU < lU in Q1. By the first part, gL < bL < rL < lL in Q2.
Also g <Q r <Q l. By Case 1, we may assume that b intersects l. If bR < rR, then
b > g, a contradiction. So rR < bR.

5.3.3 Case 3 (Fig. 9)

rR < bR and r ∩ b �= ∅ in Q1.

Add two line segments, g and l, so that in Q1

• g <Q b

• g ‖Q r , and g and r are in the same relation as b and r in Case 1
• gR < rR and gR < bR

• l <Q r

• l ‖Q b

• lR is less than all of gR, rR, bR

In Q2, bL > rL by the first part of the lemma. Suppose that bR < rR. Then b and r

must intersect in Q2 in order to be incomparable. We know that gL < rL, g <Q b

and g ‖Q r . Also, g ∩ r �= ∅ and gR > rR by the Case 1 construction. Then it should
happen that l <Q r , l ‖Q b and lL < gL. This is impossible, so rR < bR.
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Fig. 10 Case 4

5.3.4 Case 4 (Fig. 10)

rR < bR and r ∩ b = ∅ in Q1.

Add a line segment g such that g >Q b and g and r are in the same relation as b and r

in Case 3. In Q2, gR < bR, because g >Q b. If bR < rR, then gR < rR, contradicting
Case 3.

This concludes the proof of the main lemma.
Although we worked out the proof for p1 and p2, observe that position of the y-axis

did not play a crucial role in the proof. By dropping the assumption that every line
segment intersects the y-axis, the proof still stands. Therefore, we can also conclude
the following:

Lemma 5.4 The statement of Lemma 5.2 holds for P1 and P2.

6 Connections with Pseudoline Arrangements

In this section, unless otherwise noted, we will work on the real projective plane P
2.

Definition 6.1 A pseudoline is a simple closed curve whose removal does not dis-
connect the plane. An arrangement of pseudolines is a set of pseudolines such that
any two intersects at exactly one point, and not all of them intersect in the same
point. Two pseudoline arrangements are isomorphic, if there is a homeomorphism
that maps one to the other. A pseudoline arrangement is stretchable if it is isomor-
phic to a pseudoline arrangement in which every pseudoline is a straight line.

Not every pseudoline arrangement is stretchable. To show a counterexample, recall
the classical geometrical theorem by Pappus.

Theorem 6.2 (Pappus) Let a1, a2, a3 be collinear points, and b1, b2, b3 be another
set of collinear points. Let (ai, bj ) denote the straight line that passes through the
points ai and bj . Then the points (a1, b2) ∩ (a2, b1), (a1, b3) ∩ (a3, b1), (a2, b3) ∩
(a3, b2) are collinear.

Corollary 6.3 The pseudoline arrangement on Fig. 11 is not stretchable.
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Fig. 11 Non-stretchable simple arrangement with 9 pseudolines

Desargues’ Theorem (see [3]) can be used to produce a non-stretchable configura-
tion on 10 lines. There are several other famous examples. Bokowski and Sturmfels
provided a “minor-minimal” infinite family of non-stretchable arrangements. This al-
ready suggests that it is difficult to determine if a pseudoline arrangement is stretch-
able. Indeed, Mnëv [9] (and later Shor [12]) proved that the problem determining if
a pseudoline arrangement is stretchable is NP-complete.

Definition 6.4 A pseudoline-arrangement is simple, if no three pseudolines cross at
the same point.

For more information on pseudoline arrangements, see [7], or for more detailed
exposition from the point of view of oriented matroids, see [2].

In the following, we will see how Conjecture 2.7 is related to stretchability of
pseudoline arrangements. We will define a sequence of posets Un ∈ p1. We will assign
a family of pseudoline arrangements to each Un, and we will ask if it is true that there
is a stretchable arrangement in each family.

Let Ûn = {1, . . . , n}3, the set of ordered triples of positive integers not greater
than n. To every element (l, r, u) of Ûn, assign the line segment from (−l,0) to (r, u).
Consider these line segments as a p1-representation of a poset. Call this poset Un.

If there is an n such that Un �∈ p2, then p1 �⊆ p2, specifically, Conjecture 2.7 is true.
On the other hand, if Un ∈ p2 for every n positive integer, then p1 ⊆ p2. Indeed, every
poset in p1 can be represented as a subset of Ûn for some large n.

The subsets of Ûn that is determined by the triples

P(r,u) = {
(i, r, u) : i ∈ {1, . . . , n}}

are called pencils.
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We say pencil P(r1, u1) dominates pencil P(r2, u2) at level i if

• (r2, u2) is below the line connecting points (−i,0) and (r1, u1), or
• (r2, u2) is on the line connecting points (−i,0) and (r1, u1) and r1 < r2 and

u1 < u2.

The following proposition is a straightforward consequence of the definition.

Proposition 6.5 The domination relation of pencils at a fixed level i is a total order
on the pencils.

In the following, we describe a pseudoline arrangement, that is associated with the
poset Un. For simplicity, we will use a Cartesian coordinate system, and we add the
ideal line. We will only specify ordered sequences of points in the coordinate system
that the pseudoline passes through, in the prescribed order. Doing so, we actually do
not fully specify the arrangement, but we do specify many (intersection) properties
of it. Then we consider all pseudoline arrangements that satisfy these properties to
get our family of arrangement.

Start with straight lines v1, . . . , vn such that vi is the vertical line at x = n − i + 1.
Add a new pseudoline pr,u for each pencil P(r,u). Let li (r, u) be the position of the
pencil P(r,u) at level i in the total order defined by domination, so that li (r, u) is 1
for the smallest pencil and n2 for the largest. Let the pseudoline pr,u pass through
(−r,0), then for i = 1, . . . , n, let it pass through (i, li (r, u)). (See Fig. 12.)

Observe, that we did not specify how the pseudolines intersect left from v1, but
it is very strictly defined how they intersect between any vi and vi+1. This way,
taking every possible arrangement (up to isomorphism), we have defined a family of
arrangements. Call it Fn.

Theorem 6.6 If there exists an n ∈ N such that no pseudoline arrangement in Fn is
stretchable, then p1 �⊆ p2.

Proof Consider Ûn, a p1-representation of Un. It is clear that we can break ties with
the endpoint coordinates in Ûn without changing the underlying poset. Also, we can
move the line segments so that no line segment endpoint lies on another line segment,
still without changing the underlying poset.

For each line segment, create two other identical segments, overlapping the orig-
inal. Now move one replica’s left endpoints to left by ε, and move the other’s left
endpoints to the right by ε. Do this so that the replicas have the same relationship
with every other line segments that are not in any copy on this pencil. With carefully
done tie breaking it is possible to shift the replicas in such a way, that the negative half
of the x-axis can be broken into disjoint intervals IR

1 , I1, I
L
1 , IR

2 , . . . , IL
n (in this order

going left on the x-axis) with the following property: The set of line segments Li

whose left end point was (−i,0) have their left endpoints in Ii , their leftward shifted
replicas have their left endpoints in IL

i and their rightward shifted replicas have their
left endpoints in IR

i . Call this new p1-representation Ũn.
We will apply Lemma 5.2 on Ũn; recall that this involves building a huge helper

poset above Ũn.
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Fig. 12 Pseudoline representation of U4

In Ûn, there were only n values attained by x-coordinates of left endpoints of
line segments (namely −1, . . . ,−n). In Ũn, the x-coordinates of the left endpoints of
the corresponding segments are grouped to n disjoint intervals. By Lemma 5.2, this
property is preserved in the p2-representation of the poset. A similar property holds
for the x-coordinates of the right endpoints.

Also by the lemma, the image of a pencil in the p2-representation resembles a ray
(a half-line). More precisely, the following properties hold:

• The left endpoints are confined to an interval in which no other line segments start,
except the ones with identical x-coordinates of right endpoints.

• The right endpoints lie in the disjoint intervals mentioned in the previous para-
graph; each segment has its right endpoint in exactly one interval, and the order is
also preserved.

• The “shorter” line segments (in p2) do not intersect any line segments that the
“longer” ones do not. (Under the term “longer”, we mean “farther reaching”: the
segments here are those whose right endpoint has greater x-coordinate, although
their “arc length” can technically be shorter.)
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For each pencil, concentrate only the “longest” line segments. We know where
these start on the x-axis (recall how they are confined into disjoint intervals).

We will add vertical lines to this p2-representation. First, consider the replicas of
sets Li for a fixed i that were moved to the left. These are confined to an interval J L

i

in the p2-representation. The replicas that were moved to the right are confined to the
interval J R

i . The same holds for the original copies of Li , call their interval Ji .
J L

i , Ji and J R
i are pairwise disjoint, and Ji is the one in the middle. So there is a

real number ri strictly between J L
i and J R

i .
In the stripe J L

i × R there exists a pseudoline, and Proposition 6.5 defines the
order it intersects the “longest” line segments defined above. This order is li , the
total order defined by pencil domination. There is a similar pseudoline in the stripe
J R

i × R, on which the intersection order is the same. So the order must still be same
on the vertical line with x = ri . Keep only these vertical lines along with the “longest”
line segments, and turn the “longest” line segments into lines by continuing them to
infinity at both ends.

What we get is a straight line arrangement that adheres to all the defining re-
quirements of the members of Fn, contradicting the assumption that no pseudoline
arrangement in Fn is stretchable. �

7 Properties of Continuous Universal Functions

In this section, we will heavily use Lemma 5.2, and we will frequently do it implicitly,
i.e., we will assume that certain segments are arranged in the specified way.

Lemma 7.1 Let f be a continuous universal function and let r , b be two line seg-
ments with rL > bL.

(i) If the right endpoint of r lies on the line defined by b, then the right endpoint of
f (b) lies on the line defined by f (r).

(ii) If the right endpoint of b lies on the line defined by r , then the right endpoint of
f (r) lies on the line defined by f (b) (specifically in the interior of f (b)).

The proof of this lemma relies on a sequence of basic statements that are claimed
together in Lemma 7.2. Note that these do not require continuity.

Lemma 7.2 Let r1 and b1 be two line segments of a representation of a p1 poset
P such that rL

1 > bL
1 . Let b and r be the corresponding elements of P . Find a

p2-representation of P . In this, the line segments corresponding to r1 and b1 will
be called r2 and b2, respectively. Let the lines defined by ri be called Ri and the lines
defined by li be called Li , respectively.

Then

(a) (bR
1 < rR

1 ) ∧ (r1 ∩ b1 �= ∅) ⇒ (r2 ∩ b2 �= ∅)

(b) (bR
1 < rR

1 ) ∧ (r1 ∩ b1 = ∅) ∧ (r1 ∩ B1 �= ∅) ⇒ (r2 ∩ b2 = ∅) ∧ (R2 ∩ b2 �= ∅)

(c) (bR
1 < rR

1 ) ∧ (r1 ∩ b1 = ∅) ∧ (r1 ∩ B1 = ∅) ⇒ (r2 ∩ b2 = ∅) ∧ (R2 ∩ b2 = ∅)
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Fig. 13 Proof of Lemma 7.2 case (d)

(d) (rR
1 < bR

1 ) ∧ (r1 ∩ b1 �= ∅) ⇒ (r2 ∩ b2 = ∅) ∧ (R2 ∩ b2 = ∅)

(e) (rR
1 < bR

1 ) ∧ (r1 ∩ b1 = ∅) ∧ (R1 ∩ b1 �= ∅) ⇒ (r2 ∩ b2 = ∅) ∧ (R2 ∩ b2 �= ∅)

(f) (rR
1 < bR

1 ) ∧ (r1 ∩ b1 = ∅) ∧ (R1 ∩ b1 = ∅) ⇒ (r2 ∩ b2 �= ∅)

Proof (a) is trivial, because if r2 ∩ b2 = ∅, then r > b would follow, while r ‖ b.
In (b), the part that r2 ∩ b2 = ∅ is trivial for similar reasons: we must have r > b.

To prove the other part, add a new line segment g1 such that bL
1 < gL

1 < rL
1 , bR

1 <

gR
1 < rR

1 and g1 ∩ b1 �= ∅ and g1 ∩ r1 �= ∅. Lemma 5.2 implies bL
2 < gL

2 < rL
2 and

rR
2 < gR

2 < bR
2 . Then g2 ∩ r2 �= ∅ because we need g ‖ r , and g2 ∩ b2 �= ∅ because we

need g ‖ b. This implies R2 ∩ b2 �= ∅.
(c) will be proven at the end of the proof.
To prove (d), add a new line segment g1 such that gL

1 < bL
1 < rL

1 , gR
1 < rR

1 < bR
1 ,

g1 ∩ b1 = ∅ and g1 ∩ r1 �= ∅ (Fig. 13). Lemma 5.2 implies gL
2 < rL

2 < bL
2 and rR

2 <

bR
2 < gR

2 . Since g < b, we have g2 ∩ b2 = ∅. Since r ‖ g, we must have r2 ∩ g2 �= ∅.
Therefore, the right endpoint of r2 in Q2 cannot stay in the triangle defined by the
left endpoints of b2 and r2 and the right endpoint of b2. This implies both statements.

To prove (e), add two new line segments g1 and w1 in the following way.

• gL
1 < bL

1 < rL
1 < wL

1

• rR
1 < gR

1 < wR
1 < bR

1

• g1 ∩ b1 �= ∅, w1 ∩ r1 �= ∅ and w1 ∩ b1 �= ∅
• w1 ∩ g1 = ∅
(See Fig. 14.) By Lemma 5.2, we may assume that rL

2 < gL
2 < wL

2 < bL
2 and wR

2 <

rR
2 < bR

2 < gR
2 . Since g ‖ b, we have g2 ∩ b2 �= ∅. Similarly, r2 ∩ w2 �= ∅. But w > g;

therefore, r2 ∩ g2 �= ∅. This implies the first statement of the lemma.
To show the second statement, add e1 such that bL

1 < eL
1 < rL

1 , rR
1 < eR

1 < bR
1 and

e1 ∩ r1 �= ∅ and e1 ∩ b1 �= ∅. By Lemma 5.2, rL
2 < eL

2 < bL
2 and rR

2 < eR
2 < bR

2 . Due
to the already proven part (d), r2 ∩ e2 = ∅ and e2 ∩ b2 = ∅. Hence r2 ∩ b2 = ∅.

To show (f), add g1 so that bL
1 < rL

1 < gL
1 , rR

1 < bR
1 < gR

1 and g1 ∩ r1 �= ∅ and

g1 ∩ b1 = ∅. By Lemma 5.2, rL
2 < bL

2 < gL
2 and gR

2 < rR
2 < bR

2 . Since g ‖ r , it follows
that g2 ∩ r2 �= ∅. Since g > b, it follows that g2 ∩ b2 = ∅. This implies the statement.
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Fig. 14 Proof of Lemma 7.2 case (e)

Now let us return to (c). We get the first part trivially from r > b. To see the
second part, add a new line segment g1 such that gL

1 < bL
1 < rL

1 , bR
1 < rR

1 < gR
1 and

g1 ∩ b1 �= ∅ and g1 ∩ R1 = ∅. Lemma 5.2 implies bL
2 < rL

2 < gL
2 and rR

2 < bR
2 < gR

2 .
Due to the already proven part (d), g2 ∩ b2 = ∅. Because of the part (f), g2 ∩ r2 �= ∅.
This implies the second part. �

Now we are ready to prove Lemma 7.1.

Proof The lemma contains four statements altogether. Part (i) has two statements
enclosed: one, if the right endpoint of r lies in the interior of b, and the other, if it
lies outside of b. Similarly, part (ii) includes two statements. All four statements have
very similar proofs, so we only include the proof of the case of part (i) when the right
endpoint of r lies in the interior of b. The other statements are proven similarly.

Consider a sequence of segments {ri}∞i=1 such that all ri have their left endpoints
at the left endpoint of r , and their right endpoints converge to the right endpoint of r ,
but the relation of ri and b is such as for r and b in part (d) of Lemma 7.2. Also
consider another sequence of segments {Ri}∞i=1 such that their left endpoints are also
at the left endpoint of r , their right end points also converge to the right endpoint of r ;
however, the relation of Ri and b is as for r and b in part (e) of Lemma 7.2.

Let T be the triangle determined by the line segment f (b) as a side and the left
endpoint of f (r) as the opposite vertex. The images f (ri) all lie outside of T (left
endpoints being at a vertex), and the images f (Ri) lie inside of T (left endpoints
being at the same vertex). The right endpoints of these segments converge to the right
endpoint of f (r). So the right endpoint of f (r) must lie on the boundary of T , which
implies the statement of the lemma. �

Nothing that has been done in this section depends on the position of the y-axis.
Since Lemma 5.2 works also in the absence of the y-axis, and we did not use the y-
axis in Lemma 7.2, it follows that Lemma 7.1 works also for shift insensitive universal
functions. We emphasize this in the following corollary.

Corollary 7.3 Let f be a continuous shift insensitive universal function, and let r , b

be two line segments with rL > bL.

(i) If the right endpoint of r lies on the line defined by b, then the right endpoint of
f (b) lies on the line defined by f (r).
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(ii) If the right endpoint of b lies on the line defined by r , then the right endpoint of
f (r) lies on the line defined by f (b) (specifically in the interior of f (b)).

8 Continuous Shift Insensitive Universal Functions

Lemma 8.1 Let r be a line segment from (−x,0) to (y, z) and b be a segment from
(−x,0) to (y,w) with x, y, z,w > 0 and z > w. Let f be a continuous universal
function. Then f (r) and f (b) have a common left endpoint and their right end points
have equal x-coordinates, but different y-coordinates.

Proof Lemma 5.2 and the continuity of f imply that the x-coordinates of the left
endpoints of f (r) and f (b) are equal; therefore, the left endpoints are identical. Also,
for similar reasons, the x-coordinates of the right endpoints are equal. So, unless
f (r) = f (b), the statement is true. Suppose f (r) = f (b).

Let g be a line segment starting at (−x − 1,0) passing through (y, z) ending at
(y + 1, z(x + y + 2)/(x + y + 1)). Due to Lemma 7.1, the right endpoint of f (g) lies
at f (r) = f (b). Considering Lemma 5.2, it is clear that the right endpoint of f (g)

must lie in the interior of f (b). This makes g and b incomparable in the underlying
poset, when the construction of b and g implies g > b. �

Corollary 8.2 Let r be a line segment from (x,0) to (y, z) and b be a segment from
(x,0) to (y,w) with z > w. Let f be a continuous shift insensitive universal function.
Then f (r) and f (b) have a common left endpoint and their right endpoints have
equal x-coordinates, but different y-coordinates.

Proof The argument is the same as for the previous lemma. Instead of using Lem-
mas 5.2 and 7.1, we have to use their shift insensitive versions, and the argument can
be repeated without change. �

Now we are ready to prove the main theorem of this section.

Theorem 8.3 There is no continuous shift insensitive universal function.

Proof Consider two non-intersecting line segments in a P1 or P2-representation of a
poset. Let d(x0) is the distance between the points that are defined by the intersection
of the line segments with the horizontal line y = x0. The function d(x) is defined
at least on some interval [0, ε] for some ε > 0. If d(x) is monotonously increasing,
then we say they diverge. Similarly, if d(x) is decreasing, we say they converge. If
they neither diverge nor converge, we say they are parallel (actually, this is not our
definition).

Let r be the line segment (0,0) to (1,2). Let b be the line segment (0,0) to (1,1).
For ε > 0 define bε to be the segment from (0,0) to (1,1 − ε).

Because of Corollary 8.2, f (r) and f (b) diverge. Since f is continuous, there
exists ε > 0 such that f (r) and f (bε) diverge. Let r ′ = f (r) and b′ = f (bε).

Define a new line segment l such that it passes through the points (1,2) and
(1,1 − ε) and its left endpoint is on the x-axis. This does not define l completely
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because it does not describe the right endpoint, but that is, in fact, not necessary: the
location of the right end point does not matter. Let l′ = f (l).

Applying Lemma 7.1 to r and l, we conclude that the right endpoint of l′ lies
on the line defined by r ′. Similarly, looking at bε and l, we conclude that the right
endpoint of l′ lies on the line defined by b′. Hence, the lines defined by r ′ and b′
intersect at the right endpoint of l′. This contradicts the fact that they diverge. �

9 Closing Remarks

Naturally, we attempted to find an integer n such that no pseudoline arrangement
of Fn is stretchable. This actually would imply that, for all m > n, no pseudoline
arrangement of Fm is stretchable because Ûn ⊆ Ûm. So we do not need to find the
smallest n, and it is certainly more natural to try to prove the statement that, for n

large enough, no pseudoline arrangement of Fn is stretchable.
The problem of stretchability is difficult is general; however, we may be able to

find a subset of Ûn for large n that is a known example of a non-stretchable arrange-
ment. We unsuccessfully attempted to find three such examples: the non-Pappus
arrangement, the so-called bad pentagon (see [7]) and the Desargues configuration.
Unfortunately, we can only come to the following conclusion.

Theorem 9.1 The non-Pappus pseudoline arrangement is not a subset of Ûn for
any n.

This theorem is actually quite hard to prove, and since it is not closely related to
the topic, we omit the proof.

Acknowledgement The authors wish to acknowledge the contribution of Stefan Felsner for his ideas on
the subject.
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