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a b s t r a c t

In this paper,we show that the dimension of the adjacency poset of a planar graph is atmost
8. From below, we show that there is a planar graph whose adjacency poset has dimension
5. We then show that the dimension of the adjacency poset of an outerplanar graph is at
most 5. From below, we show that there is an outerplanar graph whose adjacency poset
has dimension 4. We also show that the dimension of the adjacency poset of a planar
bipartite graph is at most 4. This result is best possible. More generally, the dimension of
the adjacency poset of a graph is bounded as a function of its genus and so is the dimension
of the vertex–face poset of such a graph.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

With a finite graph G, we associate two partially ordered sets (posets), called the incidence poset and the adjacency poset.
Both are height 2 posets.
The incidence poset (also called the vertex–edge poset) has the vertices of the graph as minimal elements and the edges

of the graph as maximal elements. Furthermore, a vertex x is less than an edge e in the incidence poset of the graph when
x is one of the two endpoints of e. Interest in incidence posets was initiated with the following remarkable theorem due to
Schnyder [12].

Theorem 1.1. A graph is planar if and only if the dimension of its incidence poset is at most 3.

When a graph is drawn on a surface without crossings, then we may also consider the vertex–edge–face poset, a poset
of height 3. The following theorem is due to Brightwell and Trotter [4]. Simpler proofs were given in [7,8,11].

Theorem 1.2. If a planar 3-connected graph G is drawn without edge crossings in the plane, then the dimension of the
vertex–edge–face poset is 4. Furthermore, if any vertex or any face is removed, the dimension is lowered to 3.

In a subsequent paper [5], Brightwell and Trotter extended the preceding theorem with the following result for planar
graphs with loops and multiple edges allowed.

Theorem 1.3. If a planar multigraph is drawn without crossings in the plane, then the dimension of the vertex–edge–face poset
is at most 4.

Efforts have beenmade to extend these results to surfaces of higher genus, but the fact that the dimension of the incidence
poset of a complete bipartite graph is at most 4 implies that there are graphs of arbitrary genus whose incidence posets have
bounded dimension.
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1.1. Adjacency posets

Motivated by connections between chromatic number and poset dimension we proposed in [10] investigating the
adjacency poset of a finite simple1 graph G. This poset P has V ′ ∪ V ′′ as its set of points where V ′ = {v′ : v ∈ V } and
V ′′ = {v′′ : v ∈ V } are copies of the vertex set V of G. Elements of V ′ are minimal in P and elements of V ′′ are maximal in
P. Furthermore, x′ < y′′ in P if and only if xy is an edge in G. In particular, note that x′ is incomparable to x′′ in P, for every
x ∈ V .
In this paper, we study the dimension of the adjacency posets of planar, outerplanar and planar bipartite graphs. Our

principal results will be the following three theorems:

Theorem 1.4. If P is the adjacency poset of a planar graph G, then dim(P) ≤ 8. Furthermore, there exists a planar graph whose
adjacency poset has dimension at least 5.

Theorem 1.5. If P is the adjacency poset of an outerplanar graph G, then dim(P) ≤ 5. Furthermore, there exists an outerplanar
graph whose adjacency poset has dimension at least 4.

Theorem 1.6. If P is the adjacency poset of a planar bipartite graph G, then dim(P) ≤ 4. Furthermore, there exists a planar
bipartite graph whose adjacency poset has dimension 4.

More generally, we will show that for every non-negative integer g , there is an integer dg such that the dimension of the
adjacency poset of a graph of genus g is at most dg .
Our presentation will require a few well known tools from dimension theory, and we briefly summarize these results

here. For additional background material, we refer the reader to the monograph [14] and the survey paper [15].

1.2. Background material on posets

For P a poset, we let Inc(P) denote the set of all incomparable pairs of P. If (x, y) ∈ Inc(P) and L is a linear extension of P,
we say that (x, y) is reversed in L (also L reverses (x, y)) when x > y in L. When S ⊆ Inc(P), we say that S is reversible when
there exists a linear extension L of P reversing all pairs in S. Recall that a strict alternating cycle of length k in P is a subset
S = {(xi, yi) : 1 ≤ i ≤ k} ⊆ Inc(P)with xi ≤ yj in P if and only if j = i+ 1 (cyclically), for all i, j = 1, 2, . . . , k.
The following elementary lemma is stated for emphasis.

Lemma 1.7. Let P be a poset and let S ⊆ Inc(P). Then S is reversible if and only if S does not contain any strict alternating cycles.

Also, recall that an incomparable pair (x, y) ∈ Inc(P) is called a critical pair when (1) z < x in P implies z < y in P, for all
z ∈ X , and (2)w > y in P impliesw > x in P, for allw ∈ X . We let Crit(P) denote the set of all critical pairs of P.
The definition implies that a pair (x′, y′) is a critical pair in the adjacency poset P of G exactly if all neighbors of y in G

are also neighbors of x in G. The same condition characterizes critical pairs (x′′, y′′) in P. Therefore, all critical pairs of the
adjacency poset P of a graph G are of the form (x′, y′′) if and only if for all pairs (u, v) of vertices there is a vertexw such that
vw is an edge but uw is not an edge. Note that when uv is an edge of G, vertex umay be chosen as the ‘‘private neighbor’’w
of v. If G+ is the graph obtained by adding a new neighbor of degree 1 to every vertex of a graph G, then it is ensured that
the adjacency poset P+ of G+ only has critical pairs that are of the form (x′, y′′).
Let P = (X, P) be a poset and let R = {L1, L2, . . . , Lt} be a family of linear extensions of P. We say R is a realizer of P

when P = L1 ∩ L2 ∩ · · · ∩ Lt , i.e., x ≤ y in P if and only if x ≤ y in Li for all i = 1, 2, . . . , t .
The following basic result is a standard tool from dimension theory.

Proposition 1.8. If P = (X, P) is a poset andR = {L1, L2, . . . , Lt} is a family of linear extensions of P, thenR is a realizer of P
if and only if for every critical pair (x, y) ∈ Crit(P), there is some i for which x > y in Li.

Recall that the dimension of a poset P is the least positive integer t for which P has a realizer of cardinality t . A poset P
has dimension 1 if and only if it is a chain (total order). For posets that are not chains, Proposition 1.8 implies that we can
reformulate the definition of dimension as follows.

Proposition 1.9. The dimension of a poset P which is not a chain is the least positive integer t for which there exist subsets
S1, S2, . . . , St such that

(1) Crit(P) = S1 ∪ S2 ∪ · · · ∪ St , and
(2) for each i = 1, 2, . . . , t, Si is reversible.

One central motivation for our interest in adjacency posets comes from the following elementary observation.

1 No loops or multiple edges are allowed.
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Fig. 1. Schnyder paths and regions.

Proposition 1.10. Let P be the adjacency poset of a graph G. The dimension of P is at least as large as the chromatic number of
G. Furthermore, whenever W ⊆ V , the set SW = {(x′, x′′) : x ∈ W } is reversible if and only if W is an independent set of vertices
in G.

Proof. If x and y are distinct elements of V and are adjacent in G, then {(x′, x′′), (y′, y′′)} is a strict alternating cycle of length
2, i.e., no linear extension can reverse both (x′, x′′) and (y′, y′′). This is enough to show that the dimension of P is at least as
large as the chromatic number of G. On the other hand, ifW is an independent set, then there are no strict alternating cycles
contained in SW , so SW is reversible. �

In fact, whenW is an independent set, we can say a bit more.

Proposition 1.11. If P is the adjacency poset of a graphG andW is an independent set of vertices inG, then the set S = {(x′, y′′) :
x, y ∈ W } is reversible.

As we shall see, the dimension of the adjacency poset of a graph can in fact exceed the chromatic number of the graph.
This can even happen for outerplanar graphs.

2. Background material on planar triangulations

Central to Schnyder’s proof of Theorem 1.1 is a special coloring and orientation of the interior edges of a triangulation,
today known as Schnyder wood. For existence and the theory of Schnyder woods we refer to [12,13,9,11]. Below we collect
some of the features of Schnyder woods needed in our context.
Schnyder paths and regions
Let T be a planar triangulation in which the three exterior vertices are labeled v0, v1 and v2 (in clockwise order). A

Schnyder wood is an orientation and a coloring of the interior edges of T, using colors from {0, 1, 2} such that:

(1) Each interior vertex has outdegree 3. Furthermore, these edges are colored (in clockwise order) 0, 1 and 2.
(2) If x is an interior vertex and α ∈ {0, 1, 2}, there is a unique oriented path Pα(x) from x to vα consisting of edges colored

α.
(3) If x is an interior vertex and α ∈ {0, 1, 2}, then x is the only vertex that Pα(x) and Pα+1(x) have in common.
(4) For each interior vertex, let Rα(x) be the region of the plane whose boundary consists of the edge vα+1vα+2 and the path
Pα+1(x) ∪ Pα+2(x). If y is an interior vertex and y ∈ Rα(x), then Rα(y) ⊆ Rα(x).

(5) If x and y are distinct interior vertices with y ∈ Rα(x), then Pα+1(y) intersects Pα+2(x) in at most one point and this
occurs only when y is on Pα+2(x). Similarly, Pα+2(y) intersects Pα+1(x) in at most one point and this occurs only when y
is on Pα+1(x).

We illustrate the concepts of Schnyder paths and regions in Fig. 1.

3. The upper bound for planar graphs

In this section, we prove that if P is the adjacency poset of a planar graph G, then dim(P) ≤ 8. We will assume the
following:

• G is a triangulation and all critical pairs in Crit(P) are of the form (x′, y′′)where x′ ∈ V ′ and y′′ ∈ V ′′.

If this is not true for G, then we may add vertices with connecting edges to form a graph H satisfying the assumption such
that G is an induced subgraph ofH. As a consequence, the adjacency poset of Gwill be an induced subposet of the adjacency
poset of H.
We consider a planar drawing of the maximal planar graph G and label the three exterior vertices in clockwise order as

v0, v1 and v2. We then consider a family of Schnyder paths and regions associated with this triangulation.
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When x and y are distinct interior vertices and y ∈ Rα(x), we say that y is properly contained in Rα(x) when y does not
lie on the path Pα+1(x) ∪ Pα+2(x). Note that when y is properly contained in Rα(x), any neighbor z of y is also contained in
Rα(x).
The following elementary property is stated for emphasis. It is an immediate consequence of the properties of Schnyder

paths and regions.

Remark 3.1. Let α ∈ {0, 1, 2}, and let x, y and z be vertices of Gwith y properly contained in Rα(x) and z a neighbor of y in
G. Then Rα(z) ⊆ Rα(x); furthermore, if x and z are distinct, then Rα(z) ( Rα(x).

3.1. Covering the set of critical pairs

Let φ : V −→ {1, 2, 3, 4} be a proper 4-coloring of G. For each j = 1, 2, 3, 4, we let Sj = {(x′, x′′) : φ(x) = j}. As noted
previously, each Sj is reversible.
We now define six subsets S5, S6, . . . , S10 of Crit(P) by the following rule: For each α = 0, 1, 2,

(1) S5+2α = {(x′, y′′) ∈ Crit(P) : y is properly contained in Rα(x)}.
(2) S5+2α+1 = {(y′, x′′) ∈ Crit(P) : y is properly contained in Rα(x)}.

Claim 3.2. Each of S5, S6, . . . , S10 is reversible, i.e., none of these sets contains a strict alternating cycle.

Proof. We first prove the claim for the sets S5+2α: Fix α and suppose that S5+2α contains a strict alternating cycle {(x′i, y
′′

i ) :
1 ≤ i ≤ k} for some k ≥ 2. Since x′i ≤ y

′′

i+1 in P (cyclically), we must have that xiyi+1 is an edge in G. But since yi+1
is properly contained in Rα(xi+1), this implies that xi is contained in Rα(xi+1). Since xi and xi+1 are distinct, we know that
Rα(xi) ( Rα(xi+1), which cannot hold for all i. The contradiction completes the proof of these cases.
The proof for the sets S5+2α+1 is almost identical. We have y′i ≤ x

′′

i+1 in P; hence, yixi+1 is an edge in G. Since yi is properly
contained in Rα(xi)we get xi+1 ∈ Rα(xi). With xi 6= xi+1 this implies Rα(xi+1) ( Rα(xi), which cannot hold for all i. �

It is easy to see that every critical pair in Crit(P) belongs to one of the sets in the family {S1, S2, . . . , S10}, and we have
already noted that each of these ten sets is reversible. This shows that the dimension of P is at most 10.

3.2. Eliminating two of the ten

For each i = 1, 2, . . . , 10, let Li be a linear extension of P reversing all the critical pairs in the reversible set Si.
For each j = 1, 2, 3, 4, let:

(1) Aj = {u′ ∈ V ′ : φ(u) 6= j} ∪ {v′′ ∈ V ′′ : φ(v) = j}, and
(2) Bj = {u′ ∈ V ′ : φ(u) = j} ∪ {v′′ ∈ V ′′ : φ(v) 6= j}.

Then Aj ∪ Bj = V ′ ∪ V ′′ for each j = 1, 2, 3, 4. Furthermore, for each j = 1, 2, 3, 4, there is no edge xy from Gwith x′ ∈ Bj
and y′′ ∈ Aj. It follows that we may form a linear extension L̂j of P by the following construction:

(1) L−j is the induced ordering of L9 on Aj,
(2) L+j is the induced ordering of L10 on Bj,
(3) L̂j is the concatenation of the two, i.e., L̂j = L−j + L

+

j .

Note that L̂j reverses every critical pair from Sj for j ∈ 1, 2, 3, 4. A critical pair (x′, y′′) ∈ S9 is reversed in L̂φ(y) and
(x′, y′′) ∈ S10 is reversed in L̂φ(x). This shows that the eight linear extensions in the family {L̂1, L̂2, L̂3, L̂4, L5, L6, L7, L8} form
a realizer of P. This completes the proof of the theorem.

4. The upper bound for outerplanar graphs

In this section we prove that if P is the adjacency poset of an outerplanar graph G, then dim(P) ≤ 5.
After adding vertices with connecting edges we have a 2-connected outerplanar graph G. Since 2-connected outerplanar

graphs are Hamiltonian we may conclude that all critical pairs of the adjacency poset P of G are of the form (x′, y′′) where
x′ ∈ V ′ and y′′ ∈ V ′′.
By adding edges to G we obtain a maximal outerplanar graph H, i.e., H is an inner triangulation. Finally we add a root

vertex r adjacent to all vertices in V . This yields a triangulation H+. Note that the original graph G will not in general be
an induced subgraph of H+. Regardless, we have a maximal planar graph H+ for which we consider a planar drawing with
r = v0 as one of the three exterior vertices.
Since H = H+ \ {r} is outerplanar, it is 3-colorable. Let φ : V −→ {1, 2, 3} be a proper coloring of H. Then φ also

determines a proper 3-coloring of G. So for each i = 1, 2, 3, the set Sj = {(x′, x′′) ∈ Crit(P) : φ(x) = j} is reversible.
Define subsets S5, S6, . . . , S10 of Crit(P) by the samedefinition aswas used in the proof of the upper bound in Theorem1.4.

That is, we use a fixed Schnyder wood for H+ in the construction. Regardless of the choice of this Schnyder wood we note
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Fig. 2. A planar bipartite quadrangulation H and its associated graph B.

that having a vertex x in the proper interior of R0(y) for some y 6= y would be in contradiction to the outerplanarity of H.
Therefore S5 and S6 are both empty. It follows that Crit(P) is covered by the sets in the family {S1, S2, S3, S7, S8, S9, S10}, and
each of these seven sets is reversible. This shows that dim(P) ≤ 7.
Let L1, L2, L3, L7, L8, L9, L10 be linear extensions of P reversing all the critical pairs in their respective sets. As before, we

can modify L1, L2 and L3 to form new linear extensions L̂1, L̂2 and L̂3 so that {L̂1, L̂2, L̂3, L7, L8} is a realizer of P. This shows
that dim(P) ≤ 5, and the proof is complete.

5. The upper bound for planar bipartite graphs

Our argument for this case requires two elementary results from dimension theory. First, when a poset P is the disjoint
sum of two other posets, say P = Q ∪· R, then dim(P) = max(2, dim(Q), dim(R)). Note that the preceding statement is just
the special case of the formula for the dimension of a lexicographic sum when the base poset is a two-element antichain.
The second result is the trivial observation that a poset and its dual have the same dimension. With these remarks in

mind, we can now proceed to prove that the dimension of the adjacency poset of a bipartite planar graph is at most 4.
Note that G is an induced subgraph of some 3-connected quadrangulationH. To see this we add vertices with connecting

edges to G in three phases. In the first phase we make the graph 2-connected. In the second phase we insert stars in faces of
higher order to get a quadrangulation. Finally we add four vertices to each face of the graphs so that the four new vertices
together with the four vertices of the face induce a cube. The result is H and by construction the adjacency poset of G is an
induced subposet of the adjacency poset of H.
Since H is bipartite, there is a partition V = X ∪ Y of the vertex set such that all edges in H have one endpoint in X and

the other in Y . Then we note that the adjacency poset P is the disjoint sum of two height two posets P1 and P2. The elements
of P1 are the minimal elements in {x′ : x ∈ X} together with the maximal elements in {y′′ : y ∈ Y }. Similarly, the elements
of P2 are theminimal elements in {y′ : y ∈ Y } together with themaximal elements in {x′′ : x ∈ X}. Also, note that the posets
P1 and P2 are dual. Since P1 is not a chain, it follows that dim(P) = dim(P1) = dim(P2).
Next, we claim that P1 can be viewed as the vertex face poset of a planar graph B. The vertex set of B is X . Two vertices

are joined by an edge if and only if they both belong to a quadrangular face ofH; see Fig. 2. SinceH is 3-connected, two faces
of H can share at most one vertex from X . Therefore the graph B resulting from the construction is simple. It is also planar
and its faces are in bijection to the elements of Y . Indeed there is an incidence between a vertex x and a face y in B exactly
if x and y are adjacent in H, i.e., if x′ < y′′ in P1.
Since this new graph B is planar, it follows from Theorem 1.3 that the dimension of its vertex–face poset is at most 4.

Since this poset is P1, the proof that the dimension of the adjacency poset of a planar bipartite graph is at most 4 is complete.
To see that this bound is best possible, consider the cube. The adjacency poset of the cube consists of two disjoint copies

of the vertex–face poset of the tetrahedron. Among poset-theorists this poset is known as the standard example S4; see e.g.
[14, page 12]. The dimension of S4 equals 4.
The upper bound of the adjacency poset of a planar bipartite graph immediately gives an upper bound to the dimension

of height 2 posets with planar Hasse graph. We state this result as a corollary below.

Corollary 5.1. If P is a height 2 poset and the underlying graph of the Hasse diagram of P is planar, then dim(P) ≤ 4, and this
bound is tight.

Proof. Let Pd be the dual poset of P, and let G be the underlying graph of the Hasse diagram. Consider the poset R = P∪· Pd.
Note that we can regard R as the adjacency poset of the graph G, which is planar bipartite. By Theorem 1.6, we have
dim(R) ≤ 4, and the result follows from our earlier observations concerning disjoint sums and duals. We note that the
upper bound is tight by considering P as the standard example S4 of a four-dimensional poset. This completes the proof. �

6. The lower bound for outerplanar graphs

In this section, we show that the dimension of the adjacency poset P of the outerplanar graph G shown in Fig. 3 has
dimension at least 4. In fact, we show slightly more. In the spirit of the proofs of the upper bounds, we let S be the subset
of Crit(P) consisting of all pairs of the form (x′, y′′) where x′ ∈ V ′ and y′′ ∈ V ′′. We show that if F is a family of linear
extensions of P and F reverses S, then |F | ≥ 4.
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Fig. 3. An outerplanar graph.

Fig. 4. A poset of height 2.

Actually, showing that reversing all critical pairs of the form (x′, y′′) requires four linear extensions implies a little more
than just dim(P) ≥ 4. Let P be a poset of height 2 such that the set S consisting of all critical pairs of the form (u, v)where
u is a minimal element and v is a maximal element is not empty. The minimum number of linear extensions reversing S is
the interval dimension of P. This parameter was defined for general posets (arbitrary height) by Bogart and Trotter [3]. There
are posets of large dimension and small interval dimension; this remains true for height 2.
We go for a contradiction. Suppose that there is a family F = {L1, L2, L3} reversing all critical pairs in S.
Let φ : V −→ {1, 2, 3} be the proper 3-coloring of G defined by setting φ(x) = iwhen the critical pair (x′, x′′) is reversed

in Li. Without loss of generality, we may assume that φ is the 3-coloring shown in Fig. 3.

Claim 6.1. For each i = 1, 2, 3, if x and y are distinct vertices with φ(x) = φ(y) = i, then the critical pairs (x′, y′′) and (y′, x′′)
are both reversed in Li.

Proof. If T is the dual graph of G formed by the triangular faces (not including the exterior face), then T is a tree on 12
vertices. For distinct non-adjacent vertices u and v in G, let ρ(u, v) be the minimum distance in T between two faces, one
containing u and the other containing v. Note that ρ(u, v) ≤ 8 for all non-adjacent pairs u and v in G.
We now prove the claim by induction on ρ(x, y). Suppose first that ρ(x, y) = 1. Choose faces F0 and F1 that are adjacent

in T such that x ∈ F0 and y ∈ F1. Then |F0 ∩ F1| = 2. Note that for each j ∈ {1, 2, 3} with j 6= i, there is a vertex u in F0 ∩ F1
with φ(u) = j. Then Lj reverses (u′, u′′) so it cannot reverse either (x′, y′′) or (y′, x′′). It follows that both (x′, y′′) and (y′, x′′)
are reversed in Li.
Now suppose that for some k ≥ 1, the claim holds provided ρ(x, y) ≤ k. Then consider a non-adjacent pair x, y with

ρ(x, y) = k+ 1. If φ(x) = φ(y) = i, then by inspection, we note that for each j ∈ {1, 2, 3} with j 6= i, there exist vertices u
and v with:
(1) u adjacent to x and v adjacent to y in G.
(2) φ(u) = φ(v) = j.
(3) ρ(u, v) ≤ k− 1.
It follows that Lj reverses all four of the critical pairs (u′, u′′), (u′, v′′), (v′, v′′) and (v′, u′′). However, this implies that

neither (x′, y′′) nor (y′, x′′) is reversed in Lj. Hence, both are reversed in Li. This proves the claim. �

At this point in the argument, we consider the height 2 poset Q shown in Fig. 4.

Claim 6.2. Let F be a family of linear extensions of Q. If F reverses all critical pairs of Q of the form (u, v) where u is minimal
and v is maximal in Q, then |F | ≥ 3.
We do not include the easy proof but remark that the claim is equivalent to the statement that Q has interval dimension

3. Moreover the removal of any point from Q lowers the interval dimension to 2. Felsner [6], has characterized all posets of
height 2 with this property.
With the claimwe can complete the proof. Note that the elements in {x′ : φ(x) = 3}∪ {y′′ : φ(y) = 2} form a copy of the

poset Q shown in Fig. 4. However, none of the critical pairs of the form (x′, y′′) ∈ S with φ(x) = 3 and φ(y) = 2 is reversed
in L1. Hence, they must all be reversed by the family {L2, L3}, which is impossible.

7. The lower bound for planar graphs

Let H be the planar graph determined by attaching a new vertex r adjacent to all vertices in the outerplanar graph G
shown in Fig. 3. We claim that the dimension of the adjacency poset of H is at least 5. To see this, letR be a realizer of the
adjacency poset of H. Choose a linear extension L ∈ R reversing the critical pair (r ′, r ′′), and let F = R − {L}.
Then F reverses the set S of critical pairs, and this requires |F | ≥ 4. Thus |R| = dim(P) ≥ 5.
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8. Adjacency posets of graphs of higher genus

In this section, we show that the dimension of the adjacency poset of a graph is bounded as a function of the genus of
the graph. More formally, we will prove the following result.

Theorem 8.1. For every non-negative integer g, there exists an integer dg such that if P is the adjacency poset of a graph G and
the genus of G is g, then the dimension of P is at most dg .

Before beginning the proof, we assemble two necessary preliminary results. First, recall that the acyclic chromatic number
of a graph G is the least positive integer t for which there is a proper coloring of G using t colors such that for every two
colors, the subgraph of G induced by the vertices assigned these colors is acyclic.
The next theorem is due to Albertson and Bermen [1]. Alon et al. [2] have estimated the bound ag as O((2g − 2)4/7).

Theorem 8.2. For every non-negative integer g, there exists an integer ag such that if G is a graph of genus g, then the acyclic
chromatic number of G is at most ag .

Second, we have the following result due to Trotter and Moore [16].

Theorem 8.3. Let P be a poset whose diagram is a tree (or a forest). Then the dimension of P is at most 3.

Note that the diagram of the poset Q shown in Fig. 4 is a tree and it has dimension 3, so the preceding theorem is best
possible.
With these results in mind, we are now ready to prove the theorem.

Proof of Theorem 8.1. The theorem holds when g = 0, so we may assume that g is positive. Let G be a graph of genus g ,
and let P be the adjacency poset of G. We may add ‘private neighbours’ to some vertices of G to ensure that all critical pairs
are of the form (x′, y′′). We show that dim(P) ≤ 3

( ag
2

)
.

Letφ be a proper coloring ofG using ag colors such that for every two colors, the vertices assigned these two colors induce
an acyclic subgraph of G, i.e., a collection of trees.
For each pair {i, j} of distinct colors 1 ≤ i, j ≤ ag , we consider the adjacency poset of the graph induced by vertices of

colors i and j in G. This subposet of P is a collection of disjoint trees. By Theorem 8.3, three linear extensions are enough to
reverse the critical pairs in this subposet. Any linear extension of a subposet of a poset can be extended to a linear extension
of the parent poset. So with 3

( ag
2

)
linear extensions, we can reverse all critical pairs in P. �

The theorem has direct implications for the dimension of vertex–face posets of graphs of genus g .

Corollary 8.4. The dimension of the vertex–face poset of a graph of genus g is at most dg , where dg is the bound from Theorem 8.1.

Proof. The proof is similar to the argument for bipartite planar graphs, but the known bound is transferred in the other
direction.
Let G be a graph embedded in a surface of genus g and let V , E and F denote the sets of vertices, edges and faces of G.

Construct H with vertex set V ∪ F and edges (v, f ) for all incident pairs v ∈ V and f ∈ F . This graph clearly comes with
a drawing without crossings on the same surface as G. Therefore, we know from Theorem 8.1 that the dimension of the
adjacency poset P of H is at most dg .
Since H is bipartite we know that P has two components. Let P1 be the component induced by V ′ and F ′′; clearly

dim(P1) ≤ dg . From the construction of H it follows that P1 is the vertex–face poset of G. This completes the proof. �

9. Concluding remarks

We have some feeling that the lower bound is tight for outerplanar graphs, i.e., we make the following conjecture:

Conjecture 9.1. If P is the adjacency poset of an outerplanar graph, then dim(P) ≤ 4.

We are less certain of the correct answer for planar graphs. Perhaps the right answer is 6.
For the genus, the right answer is likely to be O(g).
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