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tract. In a finite partially ordered set, Prob(z > y) denotes the proportion of linear
(cnsions in which element x appears above element y. In 1969, S. S. Kislitsyn conjectured
\ in every finite poset which is not a chain, there exists a pair (z,y) for which 1/3 €
rob (z > y) < 2/3. In 1984, J. Kahn and M. Saks showed that there exists a pair (z,y) with
] /11 < Prob(z > y) < 8/11, but the full 1 /3-2/3 conjecture remains open and has been
isted among ORDER’s featured unsolved problems for more than 10 years.

In this paper, we show that there exists a pair (x,y) for which (5 ~ v/5)/10 < Prob (x >
< (5 ++/5)/10. The proof depends on an application of the Ahlswede-Daykin incquality
0 prove a special case of a conjecture which we call the Cross Product Conjecture. Our
itoof also requires the full force of the Kahn—-Saks approach — in particular, it requires the
Alexandrov—Fenchel inequalities for mixed volumes.

We extend our result on balancing pairs to a class of countably infinite partially ordered
s where the 1/3-2/3 conjecture is false, and our bound is best possible. Finally, we obtain
inproved bounds for the time required to sort using comparisons in the presence of partial

Mathematics Subject Classifications (1991). 06A07, 06A10.

¢y words. Partially ordered set, linear extension, balancing pairs, cross-product conjecture,
Ahlswede—Daykin inequality, sorting.

# An extended abstract of an ecarlier version of this paper appears as [6]. The results here
ire much stronger than in [6], and this paper has been written so as to overlap as little as

possible with that version.
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1. Introduction Jur main result is the following inequality

Given a finite partially ordered set (poset) P, let A(P) denote the set of |
extensions of P, and let L(P) = |A(P)|. For a pair z, y of distinct elcimen
P, let Prob (z > y) denote the number of linear extensions of P in which
divided by L(P). Thus Prob(z > y) is the proportion of linear cx
in which z is above y. The probabilistic notation is of course quite 1
corresponding to making A(P) into a probability space with each linear ¢
equally likely. If z < y in P, then Prob(z > y) = 0, while Prob(z - y)
if z >y in P. On the other hand, if z and y are incomparable in P, thei
Prob (z > y) < 1. In 1969, S. S. Kislitsyn [15] made the following conj
which remains one of the most intriguing problems in the combinatorial (i
of posets.

'HEOREM 1.3. If P is a finite poset whicl
ncomparable pair x,y € P so that

(5 —/5)/10 < Prob(z > ) < (5+ V

[hus, 8o = (5 —v/5)/10 =~ 0.2764.

'he proof of Theorem 1.3 requires all the ma
or the proof of Theorem 1.2. In particular
nequalities for mixed volumes to prove tha
~ Our proof also requires a new inequality -
we call the Cross Product Conjecture. Alth
he Cross Product Conjecture in full general
purposes here. Even this case requires an

nequality — a deep and powerful combinat
‘wide range of applications to posets.

- Numerically, Theorem 1.3 is only a mox
und and leaves us far short of settling the
sense, our Theorem 1.3 is best possible. T
investigation to include countably infinite p:
1/3-2/3 conjecture is false. Call a poset P
.uch that every element of P is incomparabl
s a connected incomparability graph, th
bl = {z: a < 2z < b} is finite. Let ([ay, !
hose union is the ground-set of P. If the
tervals [@m, bm], then for n = m we can ¢
the poset P|[an, by]. Brightwell [2] show
d is independent of the sequence of in
ob (z > y) in P to be this limit. This def
ay to thin posets with disconnected incor
For a thin poset P, we again define (P)
‘which there exists a pair z,y € P with (.
t & be the infimum of §(P) over all thil-]
As was discovered independently by Bri;
et Q with 8(Q) = (5 — V/5)/10. This e
set Q has as its point set X = {x;: i €

> i+ 1 1in Z. If we define the finite posc
" all points whose subscripts in absolute 1
rcise to show that

CONIECTURE 1.1. If P is a finite poset which is not a chain, then there ¢
an incomparable pair x,y € P so that

1/3 < Prob(z > y) < 2/3.

Conjecture 1.1 was also made independently by both M. Fredman and N. 1.i
and many papers on this subject attribute the conjecture to them. It iy
known as the 1/3-2/3 conjecture. If true, the conjecture would be best po
as shown by the poset with three elements and one comparable pair.

The 1/3-2/3 conjecture has been proved for several special classes of [
Linial [17] showed that the conjecture holds for width two posets, and I, |
burn, W. G. Gehrlein and W. T. Trotter [8] showed that it holds for height
posets. G. Brightwell [3] showed that it holds for semiorders, and Brightwell
C. D. Wright [5] verified it for posets in which every element is incomyi
with at most five others.

Following Kahn and Saks, for a finite partially ordered set P, we lot {
denote the largest positive real number so that there exists a pair (z, y) of dis
points from P with 6(P) < Prob(z > y) < 1 — §(P). We may then sci 4
be the infinum of §(P), taken over all finite P which are not chains. With
notation, the 1/3-2/3 conjecture is just the assertion that §y > 1/3. Ho
to the best of our knowledge, there is no entirely elementary proof that 4, -

The first major breakthrough in this area came in 1984, when Kahn
Saks [13] used the Alexandrov-Fenchel inequalities for mixed volumes to
the following result.

THEOREM 1.2. If P is a finite poset which is not a chain, then there ¢
incomparable pair x,y € P so that

3/11 < Prob(z > y) < 8/11.
lim Prob (zg > z1) = (5 — V5)/10.

n-—oe

Thus, 6o > 3/11 ~ 0.2727.
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Our main result is the following inequality which improves the bound in Theo-

poset) P, let A(P) denote the sct of li fem 1.2.

P)|. For a pair z, y of distinct clen
r of linear extensions of P in which i

y) is the proportion of linear ¢ ;
bilistic notation is of course quitc 1
probability space with each linear ¢
Prob (z > y) = 0, while Prob(x - #)
f z and y are incomparable in P, ther
slitsyn [15] made the following con
yuing problems in the combinatorial the

{EOREM 1.3. If P is a finite poset which is not a chain, then there exists an
incomparable pair x,y € P so that

(5 — /5)/10 < Prob (z > y) < (5 + V5)/10.

us, 8 = (5 —v/5)/10 = 0.2764.

1e proof of Theorem 1.3 requires all the machinery developed by Kahn and Saks
for the proof of Theorem 1.2. In particular, it requires the Alexandrov/Fenchel
inequalities for mixed volumes to prove that certain sequences are log-concave.
Our proof also requires a new inequality — a special case of a conjecture which
we call the Cross Product Conjecture. Although we have not been able to settle
¢ Cross Product Conjecture in full generality, the special case is enough for our
purposes here. Even this case requires an application of the Ahlswede/Daykin
inequality — a deep and powerful combinatorial tool which has already found a
wide range of applications to posets.

Numerically, Theorem 1.3 is only a modest improvement on the Kahn/Saks
hound and leaves us far short of settling the 1/3-2/3 conjecture. But in a certain
sense, our Theorem 1.3 is best possible. To explain this remark, we extend our
investigation to include countably infinite posets, and for this class of posets, the
1/3-2/3 conjecture is false. Call a poset P thin if there is some natural number &
ch that every element of P is incomparable with at most k others. If a thin poset
has a connected incomparability graph, then it is countable, and each interval
la,b] = {z: a < z < b} is finite. Let ([an, by]) be a nested sequence of intervals
whose union is the ground-set of P. If the elements x,y of P lie in one of the
intervals [am, bm], then for n > m we can consider Prob, (x > y) = Prob(z > y)
in the poset P|[an, b,]. Brightwell [2] showed that lim,, ., Prob,(z > y) exists,
and is independent of the sequence of intervals chosen. We naturally define
Prob(z > y) in P to be this limit. This definition can be extended in an obvious
way to thin posets with disconnected incomparability graph.

For a thin poset P, we again define 6(P) to be the largest positive number for
which there exists a pair z,y € P with §(P) < Prob(x > y) < | — §(P). Now
let &) be the infimum of 6(P) over all thin posets I” other than chains.

As was discovered independently by Brightwell [2] and Trotter, there is a thin
poset @ with 5(Q) = (5 — V'5) /10. This example is constructed as follows. The
poset Q has as its point set X = {z;: 1 € Z} with: x; < x; in @ if and only if
j > i+ 1in Z. If we define the finite poset @, to be the subset of ) consisting
of all points whose subscripts in absolute value are at most n, then it is an easy
exercise to show that

voset which is not a chain, then there
at

ndently by both M. Fredman and N. Lii
tribute the conjecture to them. It is §
true, the conjecture would be best pos
ments and one comparable pair.

roved for several special classes of o
re holds for width two posets, and P I
ter [8] showed that it holds for height
it holds for semiorders, and Brightwell
ts in which every element is incompur:

inite partially ordered set P, we lct &
T 50 that there exists a pair (z, y) of dist
> y) < 1 —9(P). We may then sct
Il finite P which are not chains. With

ust the assertion that &y > 1/3. He
s no entirely elementary proof that o -
his area came in 1984, when Kaiin
1el inequalities for mixed volumes io

t which is not a chain, then there exists

lim Prob (zg > z1) = (5 = V/5)/10.
n—oo
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h(zx) the expected value of hy(x). Whe
ir of incomparable points, then for each
e probability that hy(y) — hx(x) = i, and
() — ha(y) = i. We also set b = by and
e set € = b/B. Define the height of the
;ta; — Y, ib;; note that this is just h(y) -
We collect together various results from

Thus &, < (5 — v/5)/10. On the other hand, our proof of Theorem 1.3 wor
in the infinite setting, so we obtain the following result, proving a conjecturt
Brightwell [2] and Trotter.

THEOREM 1.4. & = (5~ v/5)/10 ~ 0.2764.

The example @) is striking on several counts. Observe that Q has width twi
is a semiorder, and each of its elements is incomparable with just two oth
As noted above, any finite poset P satisfying any one of these three conditioi
would have §(P) > 1/3.

Prior to 1994, the Kahn—Saks bound given in Theorem 1.2 was the best know
bound known lower bound on &y valid for all finite posets. However, otli
proofs bounding dy away from zero have been given. In [14], L. Khachi
uses geometric techniques to show &y > 1/e?. Kahn and Linial [12] provide
short and elegant argument using the Brunn—Minkowski theorem to show |
do = 1/2e. In [10], J. Friedman also applies geometric techniques to obtain ¢
better constants when the poset satisfies certain additional properties. In |6
Felsner and Trotter showed that there exists an absolute constant € > 0 so (i
dp = 3/11 +e¢.

Kahn and Saks conjectured that 6(P) approaches 1 /2 as the width of P tend
to infinity. In [16], J. Koml6s provides support for this conjecture by show
that for every € > 0, there exists a function f.(n) = o(n) so that if |P| = n an
P has at least f.(n) minimal points, then §(P) > 1 /2 —¢.

The remainder of the paper is organized as follows. In Section 2, we outlin
the basic flow of the proof of Theorem 1.3. In Section 3, we present the C
Product Conjecture, and the proof of the special case of the conjecture nece
for this paper. The main body of the proof is given in Sections 4,5 and 6. i
Section 7, we provide additional details on the class of countably infinite pos
where our Theorem 1.3 holds and is best possible. Finally, in Section 8, w
produce a new bound for sorting using comparisons — the motivating proble
for the study of balancing pairs.

FMMA 2.1.
a; =by =0b.
a;=0=a;; 1 =0, fori>1, and

St Y
izl =1

ar + by <ay+br.
aiy1 < aj + G, fori 22 and b

a%H > aia;4n, fori =22 and b‘z?'H
equalities (2.1), (2.2) and (2.3) are trivia
tle argument, and (2.5) is more substant
1 a generalisation of (2.4), was provided |
[ (2.6) uses the Alexandrov—Fenchel ineq
n-elementary piece of theory.

The basic approach of [13] may now t
not a chain, it follows that we may ch
(y) — h(x) < 1; necessarily = and y are
at, if the sequences a; and b; satisfy (2
eight of the pair of sequences be at most
ave h(y) — h(z) < 1, then we obtain the
ith Lemma 2.1, this technical result impl
We go a little deeper into the Kahn-Sak
Say that a (two-way) sequence ({a; }i>1,
packed, with parameters B,e,k (0 < B
he form:

2. The Basic Approach

For the next three sections of this paper, we shall deal exclusively with fin
posets. Our aim is to develop the machinery necessary to prove Theorem |
Fundamentally, our method is a both a refinement and an extension of that us
by Kahn and Saks in [13]. Accordingly, we will use the notation and terminolo
of that paper as far as possible.

Throughout, we consider the sample space of all linear extensions of a fin
poset P, with all linear extensions being equally likely. For a linear extensi
A and a point x € P, hy(z) denotes the height of = in A, i.e., if X orders
points in P as z; < 2p < -++ < x, and 2 = x;, then ha(x) = 4. We denote

(1) bj = Be(1 —e)*~! forall i > I,
(2) a; = Be(1 +¢)i~! for 1 <i <k,

k
() app1+app2 =1 =D bi— D

Case (i) k > 2, ajy2 = 0, with £/(1
Case (il) agr1 = ak + a2, With 1
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her hand, our proof of Theorem 1.3 w

_ h(z) the expected value of hy(z). When (z,y) € P x P is a fixed ordered
he following result, proving a conjecture

ir of incomparable points, then for each positive integer i, we let a; denote
¢ probability that hy(y) — h(x) = i, and we let b; denote the probability that
() — ha(y) = i. We also set b = by and let B =), b; = Prob(z > y). Then
¢ set € = b/B. Define the height of the pair ({a;}, {b;}) of sequences to be
;ta; — >, tbi; note that this is just h(y) — h(x), the expected height difference.
We collect together various results from [13] in a lemma.

~ (0.2764.

al counts. Observe that () has widih i
ents is incomparable with just two

atisfying any one of these three con
MMA 2.1.

a; =b; =b. 2.1
a;=0=a;,1=0, fori>1, and b;j=0= b1 =0, fori>1.(22)

St b=t 3

d given in Theorem 1.2 was the bes |
alid for all finite posets. However,
have been given. In [14], L. Kl
0 > 1/e*. Kahn and Linial [12] pro

> Brunn—-Minkowski theorem to show i izl izl
ipplies geometric techniques to obtain ¢4 az +by < ar +bi- @9
sfies certain additional properties. In | ai1 < s + @iy, for 122 and  biyy < bi+big, fori 2 2.5)
> exists a

n absolute constant € > 0 so § a12+1 > a;ai40, fori =2 and bH—l bibiio, fori > 2. (2.6)

P) approaches 1/2 as the width of /*
les support for this conjecture by sl
nction fe(n) = o(n) so that if |P| = 1
hen §(P) > 1/2 — e.

nized as follows. In Section 2, we o
m 1.3. In Section 3, we present the C'y
he special case of the conjecture nece
proof is given in Sections 4, 5 and &
s on the class of countably infinite |
- best possible. Finally, in Section &

i1y ¥

ng comparisons — the motivating proble

Inequalities (2.1), (2.2) and (2.3) are trivial, but already (2.4) requires a clever
ittle argument, and (2.5) is more substantial. A simpler proof of (2.5), based
on a generalisation of (2.4), was provided by Felsner and Trotter [6]. The proof
of (2.6) uses the Alexandrov—Fenchel inequalities for mixed volumes; a highly
non-elementary piece of theory.

The basic approach of [13] may now be summarized as follows. Since P
is not a chain, it follows that we may choose an ordered pair (z,y) with 0 <
(y) — h(z) < 1; necessarily = and y are incomparable. Kahn and Saks prove
at, if the sequences a; and b; satisfy (2.1)=(2.6), and the condition that the
:height of the pair of sequences be at most 1, then I3 = 3., b; = 3/11. (If we
‘have h(y) — h(x) < 1, then we obtain the strict inequality B >3 /11.) Together
‘with Lemma 2.1, this technical result implies Theorem 1.2.

We go a little deeper into the Kahn—-Saks method here, for later use.

Say that a (two-way) sequence ({a; };>1, {bi}i=1) of non-negative real numbers
is packed, with parameters B,e,k (0 < B < 1/3,0 < ¢ < I, ke N), if it is of
the form:

(1) b; = Be(1 — ey~ forall i > 1,
(2) a; = Be(1 +e)~! for 1 <i <k,
() apy1+app2=1-2 51 — Zl 1 @i, ai = 0 for i > k + 2, and either:

per, we shall deal exclusively with finil
ichinery necessary to prove Theorem |,
1 refinement and an extension of that
y, we will use the notation and terminolag

e space of all linear extensions of u fin
ing equally likely. For a linear extcnsi
the height of x in ), ie., if \ orders i
and x = x;, then hy(z) = 5. We dena

Case (i) k = 2, agp = 0, with /(1 +¢€) < ag41/ak < 1, or
Case (ii) ap41 = ak + a2, With 1 <agyi/ap <1+
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at, in Case (i), k = 1, we have H(B,¢)
never a possibility, we have that H(B,¢
<1/3.

Proof. Again, much of this is contained 11
¢ continuity, we need only prove that the fi
Case (i) is relatively straightforward. First

Note that packed sequences satisfy inequalities (2.1) through (2.6), and I
> b; = B. Note also that, for each pair (B,¢) there is exactly one p
sequence with parameters B, € and k, for some k. The easiest way to see (his
to set about constructing such a pair of sequence: B and & determine the valu
of the b;, and also that of a; = by. Then one must set a; 1 = (1 + €)a;, un
such time as there is not enough probability left to satisfy a;i7 > ea;; at th
point, one sets a;,1 as large as possible. Either this will give a; | < a; ai
ajo = 0 (Case (1), or aj41 = aj and a2 = a;q1 — a; (Case (ii)). Fo
fixed B < 1/3, decreasing ¢ from 1 to O leads us through the cases in
Case (ii), k = 1; Case (i), k = 2; Case (i1), k = 2; Case (i), k = 3; etc. i
sequences are continuous functions of e throughout this process.

Kahn and Saks calculated that, if we are in case (i) for some k, then

(1 —ek).

OH(B,e) _ B(+e)f
o g2

ow if £ < 1/k, then

1
3<%<(1+e)’““(1+28)< <1+;

1+ 2¢ + 262 - (14 e)l-Fk
l+e¢ = B

< 1+ 28, (7
hich is easily seen to be false for all integ

negative for every range where Case (i) a
Case (ii) is a little more delicate. Here we

while if we are in Case (ii) for some k, then

(1+e)!F )
1+2£<——B—~—-§1—I—25+25. OH(B,¢)
The main interest in packed sequences stems from the following lemma, al: O k2
taken from Kahn and Saks [13]. \ _ 5(1_;_;_)._ [(1 F )2 — 4e?) -
5

LEMMA 2.2. Suppose that ({a;},{b;}) is any two-way sequence satisfying i
equalities (2.1) through (2.6), with > b; = B, and b;/B = ¢. Then there iy
packed sequence with the same values of B and €, and height no greater il

that of ({a;}, {b;}).

Now we define H(B,¢) to be the height of the unique packed sequence wi
parameters B and ¢, for 0 < B < 1/3 and 0 < € < 1. Note that, for each fixe
B, this is a continuous function of €. Kahn and Saks proved that H(3/11, )
H(3/11,1) =1 for every ¢, which, combined with Lemma 2.2, gives their resu

The following are expressions for H(B,¢) in the various ranges, essentially
taken from Kahn and Saks.

For k = 1, this is positive just when €2 <
For k = 2, one needs to verify directly th

1
>
B(1+2e+2%) 7 1+

(I+ef 1>

mplies that ¢ > 0.4044, and that this in

iegative. _
For k > 3, the bound in (2.14) implies t

mplies that the derivative is negative.

| .emma 2.2 tells us that, if our aim is to mr
straints on B and possibly also g, then
quences. Lemma 2.3, and the remarks afl
take ¢ = 1 wherever possible. Thus, in
(quence is given by: by = a; = 3/11, ay

sequence with € = 1, satisfying Case (i) w
The Kahn—Saks proof actually gives the §
incomparable elements of P such that 0 <
) = 3/11. This stronger result is best poss

B
Case (i): H(B,e)=h+1-—(1+ g)ft1. (2.9)

3 B
Case (ii): H(B,e)=k+5 — (1 + e l(4e? + 5¢ +2). (2.10)

LEMMA 2.3. For each fixed B with 0 < B < 1/3, the function H(B,:)
decreasing in €, except in case (ii), with k = 1, when ¢ < 1/ V2.

Note that the exceptional range only occurs when B > 1 — 1/v/2 ~ 0.293. The
range is at its largest when B = 1/3, when it is [0.618...,0.707...]. Note al:
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hat, in Case (i), ¥ = 1, we have H(B,e) = H(B,1/2¢), so, since € < 1/2
s never a possibility, we have that H(B,e) < H(DB,1) for every ¢, for any
1< 1/3.

 Proof. Again, much of this is contained in Kahn and Saks [13]. Because of
\e continuity, we need only prove that the function is decreasing in each range.
“ Case (i) is relatively straightforward. First we claculate that

' inequalities (2.1) through (2.6), and |
h pair (B, ¢) there is exactly onc |
, for some k. The easiest way to s
of sequence: B and ¢ determine (he v
Then one must set a1 = (1 + ¢)a;, u
bability left to satisfy a,45 > ea;; at
ible. Either this will give a; | < «
d aj iy = a1 — aj (Case (ii). Tor
to O leads us through the cases in «
ase (i), & = 2; Case (1), k = 3; clc.
f € throughout this process.
ve are in case (i) for some k, then

OH(B,e) _ B(l+e)F
de g2

ow if € < 1/k, then

(1 — €k). (2.11)

1 1 1\*! 2
3 =<+ '(I+29)< | 1+ - I+, (2.12)
B k k
+ 2¢,
hich is easily seen to be false for all integers £ > 2. Therefore the derivative
k, then 4 negative for every range where Case (i) applies.
Case (ii) is a little more delicate. Here we have:
- 262,
OH(B,¢)
ces stems from the following lemmi, & oe b2 (2.13)
B(1 -
= —(—;_i)— [(1 +8)(2 —4e?) - e(4e* + 5¢ + 2)(k — 1)}.
£
g}) Is any two-way sequence satisfving J
“b; = B, and b 1/yB Z e Then ;]I: ’;‘& Ijor k = 1, this is positive qut when €2 < 1/2, as clgimed.
s of B and ¢, and height no greatcr 1} For k = 2, one needs to verify directly that the condition
1 3
A+ef !> (2.14)

ight of the unique packed sequence w B(1 +2¢ + 2¢%) T T 2et2e?
3 and 0 < e < 1. Note that, for each (i
Kahn and Saks proved that H(3/11,
mbined with Lemma 2.2, gives their reiil

H(B,¢) in the various ranges, esscutiill

mplies that ¢ > 0.4044, and that this in turn implics that the derivative is
gative.

For k > 3, the bound in (2.14) implies that & > 3/(3k -+ 1.1), which in turn
mplies that the derivative is negative. O

1+ )kt cemma 2.2 tells us that, if our aim is to maximise h(y) — h(x) subject to con-
) (raints on B and possibly also £, then we may restrict attention to packed
(1 + 5)k‘1(4ez + 5+ 2). . sequences. Lemma 2.3, and the remarks after the statement, say that we should

ke € = 1 wherever possible. Thus, in the case I3 = 3/11, the extremal se-
juence is given by: by = a; = 3/11, ap = 4/11 and a3 = 1/11, the packed
sequence with € = 1, satisfying Case (ii) with k = 1.

The Kahn-Saks proof actually gives the stronger result that, for any pair z, y of
incomparable elements of P such that 0 < A(y) — h(z) < 1, we have Prob (z >
y) > 3/11. This stronger result is best possible, as there is a six point poset (see

1 0 < B < 1/3, the function H(I3,:) i
ith k=1, when & < 1//2.

bceurs when B > 1 —1/v/2 2~ 0.293. 'Th
when it is [0.618...,0.707...]. Notc al
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eorem 2.4 and Lemma 2.5 clearly imply T
prove Theorem 2.4. In the next section, \
theme to inequality (2.6). Then we use t
derive Theorem 2.4.

'rotter [20], for example) containing an incomparable pair z, y with h(y)— ()
I and Prob (z > y) = 3/11.

As Kahn and Saks point out in [13], one way to improve the constant
Theorem 1.2 would be to show that there exists a positive absolute constant
so that if P is not a chain, then it is always possible to find an ordered i
(z,y) with 0 < h(y) — h(z) < 1 —v. However, nobody has yet been able
settle whether such a  exists. If it does, then as shown by Saks in [18], it mt
satisfy v < 0.133. Even this value would not be enough to prove §(P) > I/
Our methods show that it would imply §(P) > (3 + 2v)/11 = 0.297. In fact,
noted by Felsner and Trotter in [6], if one is going to argue solely on the bt
of packed sequences, only when 0 < h(y) — h(z) < 2/3 can we safely conc
that 1/3 < Prob(z > y) < 2/3. So we need a new idea.

Our approach towards improving Theorem 1.3 is to look at the relative heig}
of three elements rather than two. We prove the following result. Here
throughout, a||b means that @ and b are incomparable.

The Cross Product Conjecture

et P be a finite poset, and let x, y, z be dis!
/, 7) equal to the number of linear extensio
d ha(z) — ha(y) = j. Also set p(i, ) -
Ay) — ha(x) = i and hx(2) — ha(y) = 3.
We make the following conjecture.

ONJECTURE 3.1 (The Cross Product Cor
1y integers 1,7 = 1,

LG, HLG+ 1,5+ 1) < LG, j + DLGE

THEOREM 2.4. Let x, y, z be distinct points in a finite poset P, not forming
chain © < y < z. Suppose that h(z) < h(y) < h(z) < h(z) + 2.

(i) If x <y in P, then Prob(y > z) > 1/3.
(ii) If y < z in P, then Prob(z > y) > 1/3.

e have not been able to settle the Cross P
ble to prove the following special case —

HEOREM 3.2. For any finite poset P,

(iii) If z||y and y||z in P, then either L(1,1HL(2,2) < L(L,2DHLQZ, D),

nd therefore
p(1,Dp(2,2) <p1,2)p 2, 1.

efore proceeding with the proof of Theo
nly new non-linear inequality we need f
"heorem 3.2 plays the same role for us as t
or Kahn and Saks in [13]. Just as for (2.6
n a powerful combinatorial tool that has
ontexts — the Ahlswede—Daykin Four Fui
¢ stated (not quite in full generality) as fc

Prob(z > y) > 1/3, or Prob(y >z)>1/3, or
Prob (z > y) + Prob (y > 2) > (5 — v/5)/5.

We also have the following simple result.

LEMMA 2.5. For any finite poset P, not a chain, with at least three elemen
there are three distinct elements x,y, z, not forming a chain r < y < z,
that h(z) < My) < Wz) < Mz) + 2.

Proof. Clearly we may assume that P contains no element comparable
others. This implies that, if x < y in P, then h(y) — h(z) > 1. Therefor
x,y, z satisfy h(z) < hMy) < h(z) < h(z) + 2, we cannot have x < y < z in I

Write the elements of P in non-decreasing order of average height, as x|, .
Zpn. Note that h(xq) + h(zy) = 3, and h(z,) + A(z,_1) < 2n—1. If n
odd, we deduce that [A(z,) — A(z)] + [M(zy—1) — M(z2)] < 2n — 4, so eilh
hxy) — Mxzy) < n—1, or h(z,—1) — A(zy) < n — 3. In either case, we
write the difference as a sum of terms of the form h(zy,2) — h(zy), and so find
a k such that h(zg;2) — h(zg) < 2, as required. The proof for the case n cver
is similar.

'HEOREM 3.3. Let L be a finite distribu
unctions from L to the positive reals satis

a(A)B(B) < YAV B)J(A N D)
or any A, B € L. Then

o) YA <Y AN D

AeLl Acl AeLl AeL
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an incomparable pair z, y with h(y) - /i ‘heorem 2.4 and Lemma 2.5 clearly imply Theorem 1.3. Our primary task is thus
» prove Theorem 2.4. In the next section, we develop a new inequality, similar
1 theme to inequality (2.6). Then we use this, together with other inequalities,

» derive Theorem 2.4.

[13], one way to improve the cons
there exists a positive absolute ¢«
is always possible to find an orderc
7. However, nobody has yet been
oes, then as shown by Saks in [18], it i
vould not be enough to prove §(/) - |
ly 6(P) > (34 27v)/11 ~0.297. In |
if one is going to argue solely on the by
h(y) — h(x) < 2/3 can we safely concly
ve need a new idea.

heorem 1.3 is to look at the relative heig
We prove the following result. Here g
ire incomparable.

. The Cross Product Conjecture

et P be a finite poset, and let «, y, z be distinct elements of P. For 4,5 > 1, set
(4, 7) equal to the number of linear extensions A of P in which A (y)—hx(x) = i
nd hx(z) — ha(y) = j. Also set p(i,7) = L(i,j)/L(P), the probability that
A(Y) = ha(@) = i and ha(2) — ha(y) = j.

We make the following conjecture.

'ONJECTURE 3.1 (The Cross Product Conjecture). For any finite poset P and
1y integers 1,5 > 1,

LG, LG+ 1,5+ 1) < LG, j + DLGE+ 1, 9).
ct points in a finite poset P, not formin

¢ have not been able to settle the Cross Product Conjecture, but we have been
< h(y) < W(z) < h(z) + 2.

ble to prove the following special case — and this is enough for the results of

2) > 1/3. this paper.
y) > 1/3. 'THEOREM 3.2. For any finite poset P,
er LA, 1DHL2,2) < L(1,2)L(2, 1),

und therefore

p(L,Dp(2,2) <pd,2)p2, 1.

Before proceeding with the proof of Theorem 3.2, we comment that this is the
‘only new non-linear inequality we need for the proof of Theorem 1.3. Thus
Theorem 3.2 plays the same role for us as the log-concavity statement (2.6) does
for Kahn and Saks in [13]. Just as for (2.6), the proof of Theorem 3.2 is based
on a powerful combinatorial tool that has been found useful in various similar
contexts — the Ahlswede—Daykin Four Functions Theorem [1]. This result can
be stated (not quite in full generality) as follows.

(y>2z)=21/3, or

5-V5)/5.

sult.

, not a chain, with at least three elemen
» 2, not forming a chain © < y < z, su

t P contains no element comparable («
n P, then A(y) — K(z) > 1. Therefore i
W) + 2, we cannot have z < y < z in [
reasing order of average height, as «/, .
and h(zp) + h(z,_1) < 2n—1. It n
+ [Mxp—1) — h(x3)] < 2n — 4, so cith
— h(zy) < n — 3. In either case, we ciii
s of the form A(zg,2) — h(xy), and so find
s required. The proof for the case n cv

THEOREM 3.3. Let L be a finite distributive lattice, and let «, 3,7,§ be four
Junctions from L to the positive reals satisfying:

a(A)B(B) < v(AV B)§(A A B)
forany A,B € L. Then

D ad)dBA) <D A D KA.

Ael Ael Ael AeLl
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Now V(YY) C V(Z2), so it is sufficient to

L(Z\ {v,z}) S LY\ {v,x})
LZ\{z}) =~ LY \{z}))

T'his last inequality follows from Fishburn

\{z} and W =Y \ {v,z}.

Throughout this section, we will be dealing with restrictions of the poset /’ {
subsets of its ground-set. We shall abuse terminology slightly by referring (
the restriction to a subset X as simply X, so in particular we write L(X) f&
the number of linear extensions of the poset induced by P on a subset X of thi
ground set. Also, we refer to L(X) as the number of linear extensions of X.

We shall also make use of the following consequence of the Four Functios
Theorem. This result was first proved by Fishburn [7], and a simpler proa
based on an inequality of Shepp [19], was supplied by Brightwell [2]. Sec als
f4] for further applications.

Proof of Theorem 3.2.  First note that w
in P, since we are counting only linear

tisfied. Also, we may assume that y is
since otherwise L(1,1) =0

Now set D equal to the set of elements
slements above y, and I equal to the set
(D,U,I) is a partition of P\ {y}. Setlf
note that I is a distributive lattice under se
complement I \ A.

Observe that L(1, 7) is equal to the sum, o
ol linear extensions A of P in which: (i) hy
d (ii) A¢ < y < A. This number is just t
linear extensions w of U U A in which b,
linear extensions v of D U A® in which h‘
| — 1 elements come above z. Thus we h:

LG, §) = Y fi(A)gi(A).

Aeld

THEOREM 3.4. Let P be a finite poset, and suppose that V and W are 1w
up-sets in P. Then
L(V)YL(W) < Virwi
LWVUWYLVOW) ~ [VUWHV W[ =

In this note, we do not need the full strength of Fishburn’s Inequality, Thet
rem 3.4: we use only that, with V and W as above, L(V) L(W) < L(V |
WYLV NnW). We note next one fairly straightforward consequence. For
finite poset P, a minimal element = of P, and an integer ¢ > 1, set S;(/” 4
equal to the number of linear extensions A of P in which hy(z) = 1.

LEMMA 3.5. Suppose x is a minimal element in a poset Y, and Z is an up
of Y containing . Then

S Z52))S1(Z;x) < Sp(Y52)/51(Y; ).
Our aim is to apply the Four Functions
with:

a(A) = f1(A)g1(A9),

B(A) = fa(A)ga(A°),

Y(A) = fo(A)g1(A9),

8(A) = f1(A)ga(A%).
This will imply our result, provided we cz

unctions Theorem is satisfied.
Thus it suffices to show that, for any A

J1(A)g1(A°) fr(B)g2(B°)
< f2(AU B)gi(A“ N B9 [1(/

Proof. Note that S}(Z; x) is just the number of linear extensions of Z\{z}, an
S>(Z;x) is the number of such linear extensions in which the bottom element
incomparable with z. Hence S»(Z; xz)/S1(Z; x) is the probability that a randoml
chosen linear extension of Z \ {z} has its bottom element incomparable to .

Let V(Z) be the set of elements v of Z such that z is the only element belo
v in Z. Then we have

So(Zsx)

—— Z Prob (v is the bottom element in a linear extensi
Si(Z;z)

VeV (2) of Z\ {z})
Z L(Z\ {'U z})

veEV(Z) Lz \ {zh

The same is true with Y in place of Z, so it is sufficient to prove that

In fact we shall prove that

L(Z \ {v, fv}) LY \{v,z})
PICALESS |
N1(A) f2(B) < fo(AU B) fi(AN B);

v WEZN=h) T 45, LY LY\ {z}
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dealing with restrictions of the posel
abuse terminology slightly by referring i
ly X, so in particular we write [(X) i
> poset induced by P on a subset X ol
s the number of linear extensions of X',
owing consequence of the Four Funciio
ed by Fishburn [7], and a simpler prot
, was supplied by Brightwell [2]. Scc 4l

Now V(Y) C V(Z), so it is sufficient to prove that, for any v € V(Y),
L(Z\ {v,2}) S LY \ {v,z})
LZ\{z}) = LY \{z})

his last inequality follows from Fishburn’s Inequality, Theorem 3.4, with V =
Z\{z} and W =Y \ {v,z}. 0

Proof of Theorem 3.2.  First note that we may as well suppose that © < y < z
P, since we are counting only linear extensions where these relations are
isfied. Also, we may assume that y is the only element between & and z,
nce otherwise L(1,1) = 0.

Now set D equal to the set of elements of P below y, U equal to the set of
elements above y, and I equal to the set of elements incomparable to y. So
(D,U,I) is a partition of P\ {y}. Set U equal to the set of up-sets of I, and
note that U/ is a distributive lattice under set-inclusion. For A € U, let A¢ be the
complement [ \ A.

Observe that L(4, §) is equal to the sum, over all elements A of U, of the number
of linear extensions A of P in which: (i) hyx(y)—hy(xz) = 7 and hy(z)—h(y) = 7,
and (ii) A° < y < A. This number is just the product of (i) the number f;(A4) of
linear extensions p of U U A in which h,(z) = j, and (ii) the number g;(A°) of
linear extensions v of D U A® in which h,(z) = |D U A°| — i+ 1, ie., exactly
| — 1 elements come above . Thus we have

LG, 5) = ) fi(A)gi(A%).

Aeld

oset, and suppose that V and W are fi

/| W ]!
— 1.
VIV nw|!

1 strength of Fishburn’s Inequality, The
and W as above, L(V)L(W) < I(V
airly straightforward consequence. Ior
of P, and an integer ¢ > 1, set 9;(/;
ons A of P in which hy(z) = 1.

[ element in a posetY, and Z is an up-

;1 (Y; CC)
) ) Our aim is to apply the Four Functions Inequality, Theorem 3.2, to the lattice
number of linear extensions of Z\ {x}, an¢ U with:

extensions in which the bottom element A
/S1(Z; x) is the probability that a randomly
15 its bottom element incomparable to
of Z such that z is the only element below

a(A) = fiA)g1(A°),
B(A) = fr(A)g2(A),
Y(A) = f2(A)g1(A),
6(A) = f1(A)g2(A).

§ the bottom element in a linear extension This will imply our result, provided we can prove that the condition of the Four

Z\{=h) l'unctions Theorem is satisfied.
v, 2}) Thus it suffices to show that, for any A, B € U,
(z})

F1(A)g1(A9) f2(B)g2(B°)

< fo(AU B)gi1(A° N BY) f1(AN B)ga(A° U BY). )

f Z, so it is sufficient to prove that
(Y \{v,z})
LY \{z})

In fact we shall prove that

SiD) fo(B) < [l AU B)f1(AN B); (%)
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the analogous inequality for the g; follows by symmetry, and () then follows,

Inequality (xx) is trivial if either fi(A) or fo(B) is equal to 0, which is (l
case whenever either (i) A contains any element below z, or (ii) B contains moy
than one such element. We break the argument into two cases, depending o
whether B does or does not contain an element v < z.

First we suppose that B does contain such a v. Now observe that fj(A), th
number of linear extensions of U U A with bottom element z, is simply equi
to L({U U A\ {z}). Similarly f,(B) = L(U U B\ {z,v}), and similarly for th
other expressions in (x). Thus (+x) follows in this case on applying Fishburi'
Inequality with V =UU A\ {z} and W = U U B\ {z,v}.

Now we move on to the other case, where z is minimal among the elemc
of U U AU B. In this case, Lemma 3.5 is applicable, and we observe thi
fi(C) = Sy)(U U C;2), for any 4, and any set C C I such that z is minimal i
U UC. Thus in particular we have

H(B)/ fu(B) < f2(AU B)/fi(AU B).

Also, Fishburn’s Inequality tells us that

J1(A) f1(B) < f1i(AU B)fi(AN B).

Combining these two inequalities gives us inequality (x*) in this case as wel
which completes the proof. [

Perhaps the methods of this section can be extended to prove that, for any fo
any finite poset P and any positive integers 4, 7,

LA, DL(, j) < LA, j)LG, 1),

but something more powerful seems to be needed to prove the general form o
the Cross Product Conjecture.

4. Theorem 2.4 — Two Easy Cases

Suppose we have three points z, y and z of our poset P, not forming a 3
element chain, with h(z) < M(y) < h(z) < 2 + h(z). We break the proof o
Theorem 2.4 into cases, depending on the subposet of P formed by {z,y, 2}
Taking advantage of duality, we observe that we need only consider the followin
four situations.

Case Atz < zand y < z in P.

Case B: y < z, z|ly and z||z in P.

Case C: {z,y, z} is a 3-element antichain.

Case D: z < z, z||y and y||z in P.

BALANCING PAIRS

Theorem 2.4 then says that, if Cases A «
ind if Cases C or D hold, then either Prob (x
or Prob (z > ) + Prob (y > 2) = (5 — V/5),

In arguments to follow, we will continue
B, a;, b; and ¢; the pair of elements they ai
clear from the context. Later, we will we
pairs simultaneously — then we will clarify

In the remainder of this section, we deal

se A.

THEOREM 4.1. If Case A holds, then
Prob(z < y) <2/3.

Proof. In this case, note that hy(z) — hy(
that Prob (hx(2) — ha(z)) = 1 < Prob(z >

<

Prob (hy(z)—ha(z) < 2) < Prob(z >
Thus we have

2>Mz)—hx)>B+2b+3(1-B

This implies that 1 < 2B + b < 3B so that

Incidentally, Theorem 4.1 is best possible,
r,Y, 2w, withz < zandw <y < z.

THEOREM 4.2. If Case B holds, then
Prob (z < y) < 2/3.
Proof. Obviously,

h(z)=h(y) = 14+ _G=Dpli, ) = 1-
i’j
Using Z¢>1P(1,i) = Zi;Zp(“lvj) = by
I, we obtain h(z) — h(y) = 1+ by + 2(b -
This leads to a correlation between the h
of being reversed and close to each other:

hy) — M) <2 — (h(z) = hy) < |

Now suppose that there are sequences {«
ditions of (2.1)—~(2.6), with Zi>l i(a; — b;.
Then the packed sequences a; = b(1+¢)" a
conditions. Therefore we can analyze the
It turns out that the worst case occurs in C
k, it may be verified that B > 0.335, whicl
in the statement of the theorem.
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llows by symmetry, and () then follo
FL(A) or fr(B) is equal to 0, which is ¢
1y element below z, or (i1) B contains i
1e argument into two cases, dependin;
an element v < z.

ain such a v. Now observe that fi(A4)
A with bottom element z, is simply cqt
= L(U U B\ {z,v}), and similarly for (
follows in this case on applying Fishburn';
1 W =UUB\ {z,v}.

2, where z is minimal among the elemeni
1a 3.5 is applicable, and we observe il

| ‘any set C' C I such that z is minimal

ot

LU B).
1at
' B).

/es us inequality (%) in this case as well
[

can be extended to prove that, for any fo
tegers 1, 7,

to be needed to prove the general form o

and z of our poset P, not forming a
h(z) < 2+ h(x). We break the prool o
n the subposet of P formed by {z,y, =
ve that we need only consider the following

P.
- antichain.
P.
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Theorem 2.4 then says that, if Cases A or B hold, then Prob(z > y) > 1/3,
and if Cases C or D hold, then either Prob (x > y) = 1/3, or Prob (y > z) > 1/3,
or Prob (z > y) + Prob(y > 2) > (5 — V5)/5.

In arguments to follow, we will continue to use the previous definitions for b,
B, a;, b; and €; the pair of elements they are defined for (usually (,4)) will be
¢lear from the context. Later, we will we need to consider sequences for two
pairs simultaneously — then we will clarify this in the notation.

In the remainder of this section, we deal with Cases A and B. We begin with
Case A.

THEOREM 4.1. If Case A holds, then
Prob (z < y) <2/3.

Proof. In this case, note that hy(z) — hy(z) > 1 for every linear extension A,
that Prob (hy(z) — hy(x)) = 1 < Prob(z > y) = B, and that

<
Prob (hy(2)—hy(z) < 2) < Prob(z > y)+Prob (hy(y)—hx(z) = 1) = B+0.
Thus we have
2> hz)— h(x) > B+2b+3(1—-B-b).
This implies that 1 < 2B + b < 3B so that B > 1/3. O

Incidentally, Theorem 4.1 is best possible, as shown by a poset on 4 elements
Y, Z,w, with z < zand w < y < z.

THEOREM 4.2. If Case B holds, then
Prob (z < y) < 2/3.
Proof. Obviously,
W) —h(y) = 14> G=Dpli. ) > 1+p(=1,2)42 > p(=1,d+ ) p(1,i).
(%] 123 =2

Using 51 p(1,4) = Yz p(—1,) = by and p(—1,2) = p(1,1) = p(~2, 1) <
b, we obtain A(z) — h(y) = 1+ by +2(by — bp) + (by — bp) = 1+ 3b; — 20,.

This leads to a correlation between the height of « and y and their probability
of being reversed and close to each other:

hy) — h(x) < 2 — (W(z) — h(y)) < 1 — 31 + 2bs.

Now suppose that there are sequences {a;};>1 and {b;}; satisfying the con-
ditions of (2.1)—(2.6), with Zi>1 i(a; — b)) < 1 —3by + 2y and ZOI b; < B.
Then the packed sequences a; = b(1 +€)t and b; = b(1 —¢)* also satisfy all these
conditions. Therefore we can analyze the situation with the techniques of [13].
It turns out that the worst case occurs in Case (ii) with & = 3. For this value of
k, it may be verified that B > 0.335, which is a little more than what is claimed
in the statement of the theorem. O
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5. Theorem 2.4 — Case D

In this section, we assume that we are in Case D, i.e., that z,y, 2z are thi
elements of P, with h(z) < My) < Mz) < h(z) +2, = < z, z||y and y||z in I’
Set B = Prob(z > ), as before, and B’ = Prob (y > z). Our aim is to prove
that B + B’ > (5 — v/5)/5. We give reasonably full details of the computatior
in this case, since it is critical to our analysis.

We start by noting that, for any j > 2, p(—1, j) = p(1, j — 1), since swapping
and y gives a bijection between the two sets of linear extensions being count
and similarly p(j, —1) = p(j — 1, 1). Note also that, since z < z in P, p(i, j) -
whenever i + j < 0.

To simplify the computational efforts, we let X = B + B/, x; = p(l, 1),
zy = p(1,2) + p(2,1), 23 = p(2,2), ¢ = p(1,3) + p(3, 1), 25 = p(2,3) + p(3, 2.
and z¢ = p(1,4) + p4, 1).

Our method is to produce various inequalities relating X and the z;, and (h
to prove that, subject to the various inequalities, the minimum value of X iy
6 - \/5)/5. The inequalities we derive and use may seem to be somewhat
arbitrary; undoubtedly there are other inequalities, perhaps stronger and/or m
natural, that can be derived. Motivation for the particular inequalities chosen
came from two sources: (a) we know that, in the infinite poset Q defined in
Section 7, we have X = (5 —+/5)/5, z1 = (3v/5 — 5)/10, z5 = (10 — 4+/5)/5,
x3 = (75 - 15)/10, and x4 = x5 = z¢ = 0, so the inequalities we use should
be tight for this assignment of values, (b) we carried out extensive numerical
experiments using various computer algebra packages, and these suggested whicli
inequalities would be useful. In particular, the Cross Product Conjecture was
discovered with these experiments.

We now begin the derivation of the required inequalities. First we use (he
inequality h(z) — h(z) < 2 to obtain:

2> i+ 5)pG. )

1,J

2 2p(1, 1) + 3p(1,2) + 3p(2, 1) + 4p(1,3) + 4p(3, 1) + 4p(2, 2)+
+5p(1,4) + 5p(4, 1) + 5p(2,3) + 5p(3,2) + 6[1 — B — B'—
—p(, 1) =p(1,2) = p2, 1) ~ p(1,3) - p(3, 1) — p(2,2)—
= p(1,4) = p, 1) = p(2,3) = p(3,2)] + 2p(—1,3) + 2p(3, — 1)+
+ 3p(—1,4) + 3p(4, —1) + 4p(—1,5) + 4p(5, —1) + [B + B'—
= p(=1,3) =pG, =1) = p(=1,4) — p4, =1) — p(~1,5) — p(5, —1)]

=2z + 31 +4w4 + 423 + 506+ S5+ 6(1 — X — 21 — 29 — 24—
— 23 — X — T5) + 202 + 324 + 4ae + (X — 23 — 14 — 26).

Rearranging, and noting that zg > 0, we obtain that:

4 <5X +4xy + 229 + 213 + 5. 4
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Next we have that

B+ B = p(—1,2) + p(—1,3) + p(2,

2z + 1y < XL

Our next inequality requires an easy lem

EMMA 5.1.
p(2,3) < p(1,3) +p(1,4).

Proof. We give an injection from the s
(2, 3) to the union of the sets Aj and A; ¢
nd L(1,4) respectively.

For a linear extension A in A, there is ex
n A. If z|lw in P, then swap x and w to o
hen w||y in P, so we may swap w and y t
map described is clearly an injection.

imilarly we have p(3,2) < p(3, 1) +p(4,1

5 < T4 + X6
Since the sum of all probability is one,
X+zi+axr+z3+ x4+ 25+ T <

The final inequality we need comes from
(2, 1) < (p(1,2) + p(2,1))? /4, so that

13 g LIZ%/4

We claim that, subject to the inequalitie:
Wl the variables are non-negative, the min
First, adding (5.3) and (5.4) gives:

X 4z +xy+ 23+ 225 < 1.

Now we derive two simpler inequalities
2 x (5.1)+ (5.6) and get

7 <9X + Tz + 3z + 323,
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are in Case D, i.e., that x,y,z are (h
W(z) < Mx)+ 2, z < z, z||y and y||z in I
d B' = Prob(y > z). Our aim is to prc

- reasonably full details of the computati
analysis.

2, p(—1,75) = p(1, 5 — 1), since swapping
wo sets of linear extensions being counied
Note also that, since z < z in P, p(i,5) = {

orts, we let X = B+ B, 1 = p(l, 1)
4 =p(1,3)+p3, D), z5 = p2,3) + p(3,

nequalities relating X and the x;, and the
inequalities, the minimum value of X
erive and use may seem to be somewli
- inequalities, perhaps stronger and/or
ation for the particular inequalities chose
yw that, in the infinite poset () defined i
, 1 = (3V/5 = 5)/10, 25 = (10 — 4/5)
- 6 = 0, so the inequalities we use shoul
s, (b) we carried out extensive numeri
lgebra packages, and these suggested whic
ticular, the Cross Product Conjecture w

s

he required inequalities. First we use the

1) +4p(1,3) + 4p(3, 1) + 4p(2,2)+

2,3) +5p(3,2) + 6[1l - B— B'—
—p(1,3) = p(3,1) — p(2,2)—
—p(3,2)] + 2p(—1,3) + 2p(3, — D+
4p(—1,5)+4p(5,—1)+ [B+ B'—
~1,4) = p(4, =1) = p(—1,5) — p(5, = 1)|
Sz + Sxs +6(1 — X — 21 — 29 — 24—
x4 + 4xe + (X — 1y — x4 — x¢).

0, we obtain that:

5. 5.
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Next we have that

271 + 25 < X. (5.2)

Our next inequality requires an easy lemma.

EMMA 5.1.

p(2,3) < p(1,3) + p(1,4).

Proof. We give an injection from the set A of linear extensions counted by
1(2,3) to the union of the sets Ay and A, of linear extensions counted by L(1, 3)
and L(1,4) respectively.

For a linear extension A in A, there is exactly one element w with z < w < y
in A. If z|jw in P, then swap = and w to obtain a linear extension in Ay. If not,
then w||y in P, so we may swap w and y to obtain a linear extension in A;. The
map described is clearly an injection. )

Similarly we have p(3,2) < p(3,1)+ p(4, 1), and adding the two inequalities, we
have:

r5 < x4 + Te. (5.3)
Since the sum of all probability is one, we have
X4z +zy+ax3+x4+ a5+ a6 <1 (5.4)

~ The final inequality we need comes from Theorem 3.2. Observe that p(1,2) X
P2, 1) < (p(1,2) + p(2, 1))* /4, so that

ziz3 < 23 /4. (5.5)

We claim that, subject to the inequalities (5.1)—(5.5), and the requirement that
all the variables are non-negative, the minimum value of X is (5 — V5) /5.
First, adding (5.3) and (5.4) gives:

X+z+xp+a3+225 < 1. (5.6)

Now we derive two simpler inequalities from (5.1) and (5.6); first we take
2 x (5.1) + (5.6) and get

7 <9X + Txq + 32y + 33, (5.7
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MMA 6.1. If  and z are incomparable
)+ 2, then Prob(z > z) > 3/22.

Proof. This follows from Lemmas 2.2 and
1)—(2.6) with B = 3/22 has height at lez
wrameters B = 3/22 and € = 1. This seq
) =6/22, a3 = 8/22, ag = 2/22, with a h

then we take 4x(5.6)+(5.1) and note that x5 > 0, to obtain

2xy + 223 < X. (5.4

Now we set y1 = 21/X, y2 = 23/X, y3 = z3/X in (5.5), (5.2), (5.8) an
(5.7), and find that

Y1y3 < y%/4, (5.9 TMMA 6.2. If z,y, z are as given, then

Wity <l G Prob (ha(z) — ha(y) = 2) + Prob (hx(

2y +2y3 < 1, (.11 ,
 Proof. Note that the number of linear ex
consecutively in that increasing order is equ
utively in that order, and also equal to the |
at order. Thus the probability that z,y,x
| most one third of the probability that x >
Now observe that, if a linear extension
ure z,y,x consecutively in that order,
1(y) — ha(z) = 2 (or both). So we have

T<XOA+ Ty + 3y2 + 3y3). (5.

To minimise X subject to (5.9)—(5.12) is equivalent to maximising 7y; + 31
3y3 subject to (5.9)—(5.11). (Again, it is understood that all variables are non
negative.) ‘

It is easy to see that, at the optimum, we have equality in (5.9). Indeed, if w
do not, then it is possible to increase y; by some & > 0, and decrease y, by 2«
remaining feasible and increasing the objective. Also, we must have equality in
(5.10), since otherwise we can increase y, by some € > 0, and decrease y3 by
£, keeping the objective fixed, remaining feasible, and breaking the equality in |
(5.9). Thus we may substitute y, = 1 — 2y, and

Prob (hy(x) — ha(y) = 2) + Prob (hy
> Prob (hy(z) — ha(y) = 2 or |

2 1
> gProb(x >2) 2

(1-2y)* 1 11’
3:——-—_——————:.—

-1+
4y 4y,

with the final inequality following from Le
to reduce the problem to that of maximising 4y; + 3/(4y;) subject to —2y |
1/Q2y1) < 1 and y; < 1/2. The first constraint works out to y; > (v/5 — 1)/4.
The objective function is concave, so the maximum is obtained at one of the two

endpoints of the range: it turns out to be larger at the lower end, where it take:
the value (7+/5 — 1)/4. Substituting back into (5.12) gives

rom now on, we consider the two pairs (
se the notation a; to denote Prob (hx(y) -
introduce the notation a; = Prob (h)(z) —
ha(y) = z). We set, as before, B = >
B'=3"V, and & =b}/B’. Lemma 6.2 tel

35 5—
7o xBENS L x5 L
4 5 B(l-e)+B(-¢)= {7
as claimed.

~ Suppose that B -+ B’ = Prob (x > y) - Prc
~ Our plan is to incorporate the extra consti
 for the sequences corresponding to the twc
- ({a;i}, {b:}) and ({a;}, {b}}) sum to more

~us that we may assume the sequences arc
mplies the result for Case C.

6. Theorem 2.4 — Case C

The final case we have left to consider is Case C, where =, Y,z form a three
clement chain in P, with h(z) < h(y) < I(z) < h(z) + 2. For this case, we us
the methods of Kahn and Saks [13], as set out in Section 2.
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EMMA 6.1. If x and z are incomparable elements of a poset P, with h(z) <
I(x) + 2, then Prob(z > z) > 3/22.

Proof. This follows from Lemmas 2.2 and 2.3. Indeed, any scquence satisfying
.1)~(2.6) with B = 3/22 has height at least that of the packed sequence with
parameters B = 3/22 and € = 1. This sequence is given by by = aj =3 /22,
iy = 6/22, a3 = 8/22, ag = 2/22, with a height of 2. O

that =5 > 0, to obtain

/X, y3 = x3/X in (5.5), (5.2), (5.8) and

(5. LEMMA 6.2. If z,y, z are as given, then

(5-10] Prob (h(@) = ha(y) > 2) + Prob (ha(y) = ha(2) 2 2) > TII

GREY
k‘ Proof. Note that the number of linear extensions of P in which z,y, 2 occur
consecutively in that increasing order is equal to the number with y, z, x consec-
utively in that order, and also equal to the number with z,z,y consecutively in
that order. Thus the probability that z,y,z occur consecutively in that order is
at most one third of the probability that z > z.

Now observe that, if a linear extension A of P has z < =z, but does not
[eature z,y,x consecutively in that order, then either ha(z) — hx(y) = 2 or
ha(y) — hx(2) = 2 (or both). So we have

(5.1

) is equivalent to maximising 7y; + 3
it is understood that all variables are non

n, we have equality in (5.9). Indeed, if v
y1 by some £ > 0, and decrease 1, by 2
objective. Also, we must have equality in
se yp by some ¢ > 0, and decrease 13 by
ning feasible, and breaking the equality
— 2y1 and

Prob (ha(z) — ha(y) = 2) + Prob (ha(y) — ha(z) 2 2)

> Prob (hy(z) — ha(y) = 2 or hy(y) — ha(z) = 2)

2 1

> = >

> 3Pr0b(x > 2) 2 T

with the final inequality following from Lemma 6.1. (]
imising 4y; + 3/(4y1) subject to —2y +
constraint works out to y; = (v/5 — 1)/4,
the maximum is obtained at one of the t

 be larger at the lower end, where it takes
vack into (5.12) gives

5-+/5
5 >

l'rom now on, we consider the two pairs (:x, 1) and (y,z). We will continue to
use the notation a; to denote Prob (hy(y) — ha(x) = 4), and similarly for b;; we
introduce the notation a; = Prob (hx(z) — ha(y) = 1), and O = Prob (hx(y) —
ha(y) = z). We set, as before, B = > b; and ¢ = by/13; we define also
BB =3"b. and ¢’ = b} /B’. Lemma 6.2 tells us that

B(l—¢g)+B(1-£)> Tli 6.1)
Suppose that B + B’ = Prob(z > y) + Prob(y > z) = (5 — '\/5)/5.

Our plan is to incorporate the extra constraint (6.1) into the Kahn—Saks analysis
for the sequences corresponding to the two pairs, and deduce that the heights of
({ai}, {b:}) and ({a’}, {b;}) sum to more than 2. To this end, Lemma 2.2 tells
us that we may assume the sequences are packed. The following lemma thus
implies the result for Case C.

ler is Case C, where x,7, z form a thre
< W(z) < h(z) + 2. For this case, we use
1s set out in Section 2.




344 G. R. BRIGHTWELL ET A

LEMMA 6.3. If 0 < B< B' < 1/3, B+ B = (5—/3)/5, and B(1 —
B'(1 — &'y > 1/11, then H(B,e)+ H(B',&') > 2.

Proof. We break the analysis into three cases.

(a) First, let us assume that B > 3/10, and that 1 4 2¢ + 2¢2 < 10/3, whi
implies that £ < 0.7 < 1/v/2. By Lemma 2.3, we have H(B, ) + H(B',¢')
H(B,gp)+H(B', 1), where 1/B = 1-}—250—1-25(%. Note that 0.618 ~ (/5—1)/2
g0 < 0.7.

For (B, ¢) satisfying Case (ii), £k = 1, we have

H(B,ﬁ):§~£(462+55+2)
5-11B ey
=224 Bi-o- 0=

Thus we obtain

(1 —eg)2ep— 1)
€0

(1 —ep)2ep— 1)

go(1 4 2 + 2e3)°

H(B,ep)+ H(B', 1) = 5 %1(3 + B+ B

115—-+v5
IR

=35
2 5

This function is minimised in the range [0.618...,0.7] at the lower endpoint,

when it is equal to (10 4+ 9+/5)/15 ~ 2.0083.
(b) Our second case is where B is any value in the feasible range [0.219 ..

1/3], and (1 + 2¢)(1 +¢) < 1/B, i.e., € is at or below the lower boundary of

Case (i) with & = 2. Then, by Lemma 2.3, H(B,¢) + H(B',&") > H(B,¢) |
H(B', 1), where (1 +2e1)(1 +¢€1) = 1/B, so certainly g1 > 1/2.
Now

3
H(B.ey)~ H(B,1) = - - B (_(1_‘{:15]_) ~ %>

2
1 2—5e; + 6% +2¢}
2 2e1(1 4+ +2¢y)

and this expression is at least 1/12 in the range 1/2 < ¢; < 1. Since H(B, 1) |
H(B', 1) =5 —11(5 = /5)/5 ~ 1.960, we are done here.

(c) The remaining case is when neither the (B, ¢) sequence nor the (B',:/)
sequence fall into one of the above two cases. Note that both sequences musi
then satisfy either Case (i) with k = 1 or Case (i) with k = 2.

Our aim is to show that the quantity

H(B,e) — H(B,1)

M(B.6) = —p0 %

JALANCING PAIRS

s at least 1/2. This will then imply that

H(B,e)+ H(B',&") = H(B, 1)+ H{

5y
SO (;

which will complete the proof.

Suppose first that the (B, ¢) sequence co
0.69, then B > 1/(1 + 2 +2¢%) > 0.3, and
Case (a). Thus € > 0.69. Then, from an ea

1
H(B,e) = H(B,1)+ B(l1 —¢) — B(—

so M(B,e) =2—1/e>2-1/0.69 >1/2

Now suppose that the (B, &) sequence c
3/10, then the sequence again comes unde
B < 3/10. Now

3_-B(l+el/e—(-1
B(l —¢)

_ 1 _(14—5)3/5'

T 2B(1 —¢) 1—¢

M(B,e) =

Thus, for each fixed e, M(B,¢) is decreasin
least 1/2, we may assume that B is as large
inside the case, we arrive at a point where
¢ > 0.69, which is on the boundary betw
M(B,e) > 1/2, or (i1) B = 3/10, and €
that M(3/10,¢) > 1/2.

This completes the proof.

We have now completed the proof of The
The calculation in this case is not desigr
and it seems to be just a matter of luck th
improvement. We suspect that, it w,y, 2
and Prob (y > 2) will be significantly lar
infinite example in [2] shows that they ma;
0.3106.
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3, B+ B' = (5 —+/5)/5, and B(l
1(B',¢") > 2.

three cases.

/10, and that 1 + 2e + 2¢% < 10/3,
emma 2.3, we have H(B,¢e) + H(I3,
+2e0-+2e3. Note that 0.618 ~ (v/5—1)/:

- 1, we have

2)

2
7)_B(1—s) .
€

£0

5-5 . (1 —¢ep)2ep — 1)
5 o(1 4 2e9 + 263)°

nge [0.618...,0.7] at the lower endpoint
2.0083.

any value in the feasible range [0.219 ..,
., € is at or below the lower boundary o
na 2.3, H(B,e) + H(B',¢') > H(B, )
1/B, so certainly £; > 1/2.

‘1+¢e)® 11
S
- S5¢1 + 65% -} 25%
(I + e 4 2¢)

the range 1/2 < e; < 1. Since H(B, 1) |
0, we are done here.

either the (B, e) sequence nor the (B, '
'wo cases. Note that both sequences m

1 or Case (i) with & = 2.

y
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is at least 1/2. This will then imply that

H(B,e)+ H(B',¢") > HB,1)+ H(B',1) + % (Bl —e)+ B'(01—¢")

545

1
25—l | — — ~2.0051,
( 5 ) i 22 3

which will complete the proof.

Suppose first that the (I3, €) sequence comes under Case (i), k= 1. If ¢ <
0.69, then B > 1/(1 4 2¢ +2¢%) > 0.3, and the (I3,¢) sequence was covered by
Case (a). Thus € > 0.69. Then, from an carlier calculation, we have that

Y
H(B,s):H(B,1)+B(1~e)—B(1 58) ,

50 M(B,e) =2~ 1/ >2—1/0.69 > 1/2, as desired.

Now suppose that the (B, €) sequence comes under Case (i), k =2. If B >
3/10, then the sequence again comes under (a) above, so we may assume that
I3 < 3/10. Now

3—B(l+¢l/e—(5-11B)/2

M(B,¢) =

B( —¢)
B 1 (4P fe—11)2
T 2B(1 -¢) — '

Thus, for each fixed e, M (B, €) is decreasing in B. So, to prove that M (B, ¢) is at
least 1/2, we may assume that B is as large as possible. Increasing B, remaining
inside the case, we arrive at a point where either (i) B = 1/(1 4+ 2¢ + 2¢2), and
¢ > 0.69, which is on the boundary between the two cases, so we know that
M(B,€) > 1/2, or (i) B = 3/10, and ¢ < 0.7, when one may verify directly
that M(3/10,e) > 1/2.

This completes the proof. O

We have now completed the proof of Theorem 2.4, and hence of Theorem 1.3.
The calculation in this case is not designed to give the best possible bounds,
and it seems to be just a matter of luck that the extra bound (6.1) gives enough
improvement. We suspect that, if x,y, z are as given, then one of Prob(z > 1)
and Prob (y > z) will be significantly larger than (5 — V/5)/10 =~ 0.2764. An
infinite example in [2] shows that they may both be as small as (13 + V17) /68 ~
(.3106.
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7. Extension to the Infinite Case

In this section, we discuss in greater detail a class of partially ordered sets [of
which there is a natural way to extend the definition of Prob (z,y) when (he
ground set is infinite. For this class, the 1/3-2/3 conjecture fails. But ouf
Theorem 1.3 remains valid and is best possible.

Recall that a poset P is thin if there is some fixed k such that every element is
incomparable with at most k others. It is also convenient to impose the conditioii
that P be locally finite, i.e., that each set {z: = < z < y}, for 2,y € P, is finil
These conditions imply that P is countable, and that, for any pair x, y of elements,
the number of elements between z and y in a linear extension of P is bounded,

Let P be an infinite, thin, locally finite poset on a ground-set X, containing
elements z,y, z, and let (X,,)°° ; be a sequence of finite subsets of X satisfying
(1) if u,v € X, and v < w < v in P, then w € X,,, (2) X; € X fori <y,
3) U2 Xn = X. Forn €N, let P, be the partial order obtained by restricting

P to X,,. It is proved by Brightwell [2] that, for any event A depending only
on finitely many basic events of the form a < b, the probability of A in /’,
converges to a limit, which is by definition the probability of A in P.

We fix an infinite, thin, locally finite poset P, and a sequence of subposets
P, with ground-sets X,,, as above. We clearly cannot define the average height
of an element, but we can define the average height difference h(z,y) of two
elements z and y to be the limit of h(y) — h(x) in P,, as n — co. It was proved
in [2] that there necessarily exists a pair z,y with 0 < A(z,y) < 1, and a similar
proof establishes that there is a triple z,y, z with h(z,y) > 0, hy, z) = 0, and
h(z,z) < 2.

Fix such a triple 2, y, z in P and, for n sufficiently large that X,, contains 1, Yy
and z, let p,(4, j) be the probability that hy(y) — hy(z) = i and h A(2) — ha(y) -
J in a random linear extension A of P,. Then each p,(i,j) tends to a limit
p(%, 7), which is the corresponding probability in P. Furthermore, if we have an
inequality relating various of the p(i, j), and perhaps also some average height
differences, that is valid for all finite posets, then the inequality will carry over (o
the limit. In particular, Theorem 3.1 is valid, and so are all the other inequalitics
used in Sections 4-6 to derive the bounds on B + B’'.

Thus all our proofs carry over into the infinite case, and Theorem 2.4, suitably
restated in terms of average height differences, is valid for infinite, thin, locally
finite posets. Thus 6(P) < (5 — +/5)/10 for every locally finite thin poset P.

Finally, we can remove the condition of local finiteness, and obtain Theo-
rem 1.4, readily enough, as follows. Every thin poset P has the structure of
family (F;)ies of locally finite thin posets, indexed by a totally ordered set /,
such that if ¢ < j in I, then every element of P, is below every element of /’,
in P. Then Prob(z < y) in P, for z||y, is defined as Prob(z < y) in the [,
containing z and y. If P is not a chain, then one of the F; is not a chain, and
we may find a balancing pair in that poset.
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8. Application to Sorting

‘The original motivation for studying balanc

with sorting. Suppose we are to find an
partially ordered set P by making comp‘uri:
at each stage, we may choose some pair o
& < y in the unknown linear extension. L
required to find the linear extension, in the
of comparisons required to sort the elem
the relations given by P. The fundamer
S(P) = O(log L(P)), i.e., is it always pos
extension of P with O(log L(P)) rounds
positive answer to this question (as does a
Indeed, at each step one can choose a p
y) < 8/11, and ask whether z is above
of possible linear extensions is reduced
round. Therefore the number of rounds re
is at most —log L(P)/log8/11. Thus I
rounds suffice, and Theorem 1.3 improves
3.091 log L(P). Later in this section, we v

None of the arguments in [12—-14] or tt
for the original sorting problem, since they
determing how to locate the balancing pair
a totally different approach to the sorting
for posets, they show the existence of a po
O(log L(P)) rounds. Their algorithm show
in queries so that, regardless of the respon
linear extension is made in O(log L(P)) 1
the pairs need not be balanced in the sen
the algorithm, Prob (z > y) may be arbit
seen that S(P) < —log L(P)/log(1 — &
information theory gives us that S(P) > 1
¢o to be the supremum, over all finite pc
previous remarks, we know ¢ < 1 / log((.‘
of this section is aimed at improving this |
for ¢g.

A better upper bound follows in a straig]
look at Theorem 2.4 and Lemma 2.5. B
has proved that S(P) < log L(P)/log 2+
with posets that are “almost sorted”, i.c.,
compared with |P|!.

" THEOREM 8.1. ¢p < 4/log5 ~ 2.485.
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8. Application to Sorting

The original motivation for studying balancing pairs in posets was the connection
with sorting. Suppose we are to find an unknown linear extension of a finite
partially ordered set P by making comparisons of pairs of clements of P. Thus,

each stage, we may choose some pair of elements x and y, and ask whether
@ < y in the unknown linear extension. Let S(P) denote the number of rounds
required to find the linear extension, in the worst case. Thus S(I) is the number
of comparisons required to sort the elements, starting from the knowledge of
the relations given by P. The fundamental problem was to answer whether
S(P) = O(log L(P)), i.e., is it always possible to determine an unknown linear
extension of P with O(log L(P)) rounds (questions). Theorem 1.2 implies a
positive answer to this question (as does any result that shows dp > 0).

Indeed, at each step one can choose a pair (z,y) such that 3 /11 < Prob (x >
y) < 8/11, and ask whether = is above y. Whatever the answer, the number
of possible linear extensions is reduced by a factor of at most 8 /11 in this
round. Therefore the number of rounds required to identify the linear extension
is at most — log L(P)/log8/11. Thus log L(P)/log(11/8) ~ 3.140log L(P)
rounds suffice, and Theorem 1.3 improves this to log L(P)/ log((5 — V5)/2) =~
3.091 log L(P). Later in this section, we will strengthen this a bit more.

None of the arguments in [12-14] or this paper yields an efficient algorithm
for the original sorting problem, since they do not provide an efficient method for
determing how to locate the balancing pair. In [11], Kahn and J. Kim have taken
a totally different approach to the sorting problem. Using a concept of entropy
for posets, they show the existence of a polynomial time algorithm for sorting in
O(log L(P)) rounds. Their algorithm shows how to efficiently locate pairs to use
in queries so that, regardless of the responses, the determination of the unknown
linear extension is made in O(log L(P)) rounds. However, at individual rounds,
the pairs need not be balanced in the sense that for a given pair (z,y) used in
the algorithm, Prob(z > y) may be arbitrarily close to zero. We have already
seen that S(P) < —log L(P)/log(1 — d&p) for every poset P, and clementary
information theory gives us that S(P) > log L(P)/log2 for every . We define
¢o to be the supremum, over all finite posets P, of S(P)/log L(F). From our
previous remarks, we know ¢o < 1/log((5 — V/5)/2) ~ 3.091. So the remainder
of this section is aimed at improving this further, and also to give a lower bound
for ¢g.

A better upper bound follows in a straightforward manner from a slightly closer
look at Theorem 2.4 and Lemma 2.5. But first we point out that Fredman [9]
has proved that S(P) < log L(P)/log2 + 2| P|, so we are really concerned here
with posets that are “almost sorted”, i.e., that have rather few linear extensions
compared with |P|!.

THEOREM 8.1. ¢ < 4/log5 ~ 2.485.
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Proof. We have to prove that S(P) < 4log L(P)/log 5 for every finite poset
P. Suppose P is a counterexample minimising (say) |P| + | L(P)|. We note that
P contains no element comparable with all others, since otherwise P breaks up
into smaller posets that can be sorted separately. The result is also true for (he
2-element antichain, so we have that P is not a chain, and has at least thrc
elements. So we may apply Lemma 2.5, and find three elements T, Y, 2, not
forming a chain in P, such that h(z) < h(y) < A(z) < Mz) + 2.

Note that, since h(z) < h(y), we certainly have Prob(z > y) < 2/3. If also
Prob(z > y) > 1/3, then we compare z and y. Whatever the result of th
comparison, we obtain a new poset P’ with L(P') < %L(P) < 57VAL(P). By
definition of P, we have that S(P') < 4log L(P")/log5 < 4log L(P)/log5-1,
and so S(P) < 4log L(P)/log5, a contradiction.

Thus Prob(z > y) < 1/3, and similarly Prob(y > z) < 1/3. From Theo-
rem 2.4, we deduce that z|ly and yl|z in P, and that Prob(z > y) + Prob (y
z) = (5 —+/5)/5, so Prob (z < y < 2) < 1/4/5. We now make the two compar-
isonsz :yandy : z. We findoneof: >y, y >z, orz < y < %z, each of which
has probability at most 1/4/5. Thus, after two comparisons, we obtain a new

poset P with at most L(P)/+/5 linear extensions. This leads to a contradiction
as before. [

The reason we gain in the last part of the proof above is, loosely, that although
the first comparison (say « : y) we make may not be “good enough”, if we get
the “bad” answer, then we know that the comparison y : z will split the sel
of linear extensions very evenly. It seems almost certain that Theorem 8.1 can
be improved by considering more and more elements that are close in average
height; however, the analysis is bound to get more complicated. A proof of the
1/3-2/3 Conjecture would give ¢y < 1/1og(3/2) ~ 2.466.

A lower bound on ¢ is provided by finite segments of the infinite partial
order ) defined in Section 7. The restriction @, of the partial order Q o
{z1,...,2,} has F, linear extensions, where F, denotes the n’th Fibonacci
number (Fy = 1, 5 = 2). So log L(Qy)/n — log((1 +v/3)/2). It is easy to sct
that S(Q,) = n — 1, since, in the worst case, all the n — 1 incomparable pairs
of elements must be compared. Thus we have

¢o = lim S(Qn)/log Qn = 1/log((1 + v/5)/2) ~ 2.078.

We conjecture that this is in fact the correct value of ¢o, so that large finite
segments of () are indeed the “worst” posets to sort.
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